
Software Productivity Consortium 6

ilegaprogramming in Ada Course:
Lectures and Exercises

Department of Defense Ada Joint Program Office

I i i0

I.44

November 1995 H (71d3) 74~na220770 •!' 1;"

-0li BB l i

'.I

'.000p - ,

AD- 1,286 847
l ll

Megaprogramming in Ada Course:
Lectures and Exercises

SPC-94094-CMC
B

Version 01.01.04
Mal
=R

November 1995
MCA)

Prepared for the %

Department of Defense Ada Joint Program Office

Produced by the
SOFTWARE PRODUCTIVITY CONSORTIUM

SPC Building
2214 Rock Hill Road

Herndon, Virginia 22070

Copyright © 1995, Software Productivity Consortium, Hemdon. Virginia. This document can be copied and distributed without fee
in the U.S., or internationally. This is made possible under thc terms of the DoD Ada Joint Program Office's royalty-free, worldwide,
non-exclusive, irrevocable license for unlimited use of this material. This material is based in part upon work sponsored by the DoD
Ada Joint Program Office under Alvanced Research Projects Agency Grant #MDA972-92-J-1018. Thi cortent does not necessarily
reflect the position or the policy of the U.S. Gover-ment, and no official endorsement should be niferred. The name Software Produc-
tivity Consortium shall not be used in advertising or puillicity pertaining to tifs material or otherwise without the prior written pcrmis-
sion of Software Productivity Consortium, Inc. SOFIWARE PRODUCTIVITY CONSORTIUM, INC. MAKES NO REPRLSEN-
TATIONS OR WARRANTIES ABOUTf THE SUITABILITY OF TIES MATERIAL FOR ANY PURPOSE OR ABOUT ANY
OTHlER MATTER, AND THiS MATERI L IS PRO VIDED WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY
KIND.

K, " .,

0 0 0• 0 • 0 0 0

40

Mold

S@1

IBM s aregsteed rad markof ntenatona Buines Mahins C rpoatin.

i Maintsh i a egitere trdemrk o Aple ompuerInc

[• McrooftandMS-OS re rgisere trdemrksof McrooftCororaion

K id w n id w 5aetae ak fMcootC coain

• • • •• • •S

REPORT DOCUMENTATION PAGE ForninAppr~ved

Public reporting burdon for ibis collection of nformation eistimated, average 1 ou per response. iricd the time for 0eviewing instructions. saachinC existing data 7ources,
gathering and mairntaninrg the data needed, and completing arid anview ng the volle tion of information Send comments regarding this burden eslimate or any other aspect of this

collection ot inlbrrmat1n. Incl.r itig suggeaStlons for reducing this burden to Washington H -eadquart ris.Semvices, Directorate for Information Operelouns and Reports. 1215 Jefferson
Davis H ,ghway. Stife 1204. Arlington. VA 22202-4302, and to the OMfice of Management anr Budget, Paperwork hReduction Project (0704-0188), Washlngton, CC 20503

1 AGENCY USE ONLY (Leavo bWink) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

September 1995 Technical Report - Final

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Megaprogramming in Ada Course: Lectures and Exercises

S. AUTIHOR(S) R. Christopher, L. Finneran, S. Wartik
Produced by Software Productivity Consortium under contract
to Virginia Center of Excellence G MDA972-92-J-1018

7. PERFOR•MING ORGANIZATION NAMES(S) AND ADDRESS(ES) 8. PERFORMING ORGANZATION

Software Productivity Consortium REPORTUMB_1R

SPC Building SPC-94094-CMC,
2214 Rock Hill Road Version 01.01.01
Herndon, VA 22070

9. SPONSORING / MONITORING AGENCY NANE(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING

ARPA,/SISTO AGENCY REPORT NIM13BER

Suite 400
801 N. Randolph Street
Arlington, VA 22203

11. SUPPLEMENTARY NOTES

N/A
12a. DISTRIBUTION / AVAILAEI3UTY STATEMENT 12b. DISTRIBUTION COOF O

No Restrictions
13. ABSTRACT (Marlnrrum 200 words)

This is a short course that introduces novice programmers to software engineering concepts and
illustrates them using the Ada programming language. The course, which takes about two weeks to
teach, is aimed at advanced placement computer science high school classes. It stresses problems
that arise in programming in the large, particularly those caused by change, communication, and
complexity. It shows how software engineers employ abstraction, information hiding, and software
reuse to deal with these problems. The solutions shown are expressed in Ada. The students see and
appreciate how Ada can help them solve real problems.

The course material contains viewgraphs instructors can use as the basis of lectures. Each viewgraph
has accompanying notes that show how to present the viewgraph and suggest topics for discussion.

The course is divided into four units; following each unit are summaries, suggested group activities,
and homework assignments. A comprehensive examination and an evaluation form are also included.

14. SUBJECT TERMS 15. NUMBER OF PAGES

Software engineering, software reuse, course, Ada, information ihiding, 162
abstraction If) PRICECODE

17. SECURITY CLASSIFICATION 18 SEGURITY CLASSIFIGAT ION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRIACT UL

Unclassified Unclassified Unclassified
NSN 75,'10-01-280-5b00 Standard Form 298 (Rev. 2-89)

Proilcroied Oy ANSiI .id 239-18
290- 102

• • • •• • •

0... .0--6 0== ==n mm6mm~l m I 0, m mm• .. - i 0

CHANGE HISTORY

Version Number Date of Change Change Description

Version 01 .00.05 April 1995 Original document.

Version 01.01.04 November 1995 Title of course, copyright notice, and slide format

is chnged

S

K &
S

S

S

S

This page intentionally left blank * *

S

S

S

S

S

* * * * * e * 0

CONTENTS

Tab

Unit 1: Software Engineering 1

Unit 1: Software Engineering, Workbook 2

Unit 2: Abstraction............................. 3

Unit 2: Abstraction, Workbook.................... 4

Unit 3: Information Hiding....................... 5

Unit 3: Information Hiding, Workbook 6

Unit 4: Reuse 7

Unit 4: Reuse, Laboratory........................ 8

Test and Survey 9

Lb

Contents

S

I®

This page intentionally left blank. 0

vi

-.. • m m - • wF mi a m m. •lm mmdmm mmm •m m ma m mM ~lI i Wt N m, -) • • m. .. . -- b- w *..m ..

ACKNOWLEDGMENTS a

Lisa Finneran and Steve Wartik created and wrote this course. Christine Ausnit and Jeff Facemire
reviewed it for the Consortium; Jerry Berry and Lydotta Taylor served as external reviewers. Bob
Christopher supervised the course's development. Bobbie Troy lent her technical editing skills, and
Deborah Tipeni and Debbie Morgan proofread and corrected the final version.

Vi

• S 0

II

* 0 0 0 • 0 • S S •

I .. .- , m , , I . .

Acknowledgments

4
I

I

This page intentionally left blank. D

v

I

viii

0• 0 0 0 0 0 0 0 •

I 6.9
Lo 0l

m0

0~

LM
C

*00C

_ C

ww

E~-C
-00

Cuu

@N

o co A

0 - 4-
I*.-~~ CDcI2 E

0) 04-

a) cn (n

Co 40--2 O
cn c I.- .. ý. a)

2 E-
0 0)

0 co 0)

L- >0a u~ .C E

0 co CL

-0 a)

o cn u CO)(0

o) o o-
a) -C ca- 4 - o -o

0- (n , ', r-. ~ a)

0) 0 O)Q o cl)-oi

CoU oj r C
0 o_ n OD c

0 3 %- 0 :3Q)i a 0
CDcXZ0 0)0)

CI C

0 LM L~n -0 --M U .- 't .
0 00 z - V

L- -0J U 1.o) N O

CO~~a C) 0 i0

0o O 1- 0 LC

A A

S

C.)

T-: cy 14 C

E 2) Mu ~cC) '01 '0)2a)5) co C\J
ch (o 5,ac CL E 3

Dczwuo).2O) O)(5)0 a)c 2)Ec

0 0 V

OE ~ (D C f)~ -

0) (D 0 n(0C
0 E 2 >

>0 E2. 0 CD 7 E _

ou 0 CC u-

0 0) aCW)0C))O >1 0
a) ->* >0L00 * o(

:50 0 c

0 a) (-)

070 0), coU0)0: c c) co 0c CZ

0 E occi~ cm ar: Z-: E *O
6., 0uEa 00 6 :0 Cw 0.) 0) Ecco (z~ (1 r~ - .C) 0

C0 a) Co 0, X Cj 0
a) a)Cd

-I) :L- CL CL -0) 0) -0.. 0

as2 L 0(is 0 a0) .ca Ca C.u

co a) c a) 0 CL -

CLC 2 E() 1 0)a
.- ~~ =3 L-~~~

a- C.) C) 0
C) c.E E p

z D. ca g) E2 O~ a) _c rnC 0 Cl -a
0 ~ ocl- 0d~ 0C) L- _) E)- - -a)V U u)Ea c n as

_) a)U 0 cow o- x- E
0)Een () a) C:cu 0)0 ca0 0) (1 2

oC a) ~ >E5> V)3 oU (z cz E =i a)W 0
'E a) (1 co c 0a~~, E .. , V, Qoacn (0 (z CL 9)0 ~ * M C a,)

1-C a. (o1n)0-~ U) 0 C- C

E 0 c 0 E

<TTT-T--n

E o

0,-

m 0 w

0
0

0))
am0C U) -

urn ~ 0' cn

E CR

2!,~ Cl.Q
> 0)

0~~¾ a)O ZC
to CAO 0) Q)
~ ~ 0

00 e~-~ 0

C0 0 C ,V r

0738 cm 'W- -0 -o 0

(D.D 00

EE -r-m=

a ~ o C) o "E 0
0 ~ C CD))

C,0 0) E~'
(j~tI0 m~c =~C-0 w)

a,>.-oH~a 'a- -Lm -

0 Q

0 toV 10
o --6*(on 3) To

0 0

l.(n -~ 0~-0
0

M 0 Lo- ID2 00)
0 -0 x L- 0: 0

a) r:()
c0 *-0

0(a >~ C) aLC
.- o- w - 0

r0) 0. 0 0
L c3

!E~ 0 w c-) c OCO

to a) E-U ca cn C
EEoW >~ .r E c

CD C a)=C. -C) 0
-r- 00) 0

Ci E CD 0 " i ~.

0n 0 am m mr0 0 E a 0 (D

SO-

000 tM CD C

(D M r U) w

00

>%o Aa)) 0 co M , w U) a)

E 0 SnwE l

%- a)(D0n0 0 7023

co 0U~ LO)U r -a) c v Enc
N0 CIS C)0C

CZ~~U 0) n S

J~ 'E a). 0 5
E~~0 0n oo a) C - o 6 C: 4

a) c 5~ C*U: ")* 0-. U) Z)i
0) U) 0). 0D - CD o E ~ 5 Lom -

Vcn a) 72 0 c, a)0
CU 0 > cis

=~ CO 0 D ý
CM W .)0 (0 0 z z

0:

(2) _) .(T :3()
-0 (I) C(a -'- ECO

0) 0-0 0
n-4 .~ (D. 00Cm E

a)) Cn(

CO- Wci U) C) Z0

a~)~ C 0) 0 >))C

0 0)rn =3C)-0 C: W 0

o C co 0., . ->Dn0 .
.0~~~. 05) 0c n z(

0) ~ C: o 00 or: a).. C*3C0)co

L L .- ~ c0. CD 0 0

H~~~~ a) a) Q ~I->'o
CD 0 0 = r- -'

0 c>N o cn 0
4- ?3'~ a) ~ (n :p 00 CD)Cl
0 w'- Ew .C C n-

2cz -=H clc nc >,. g ca
_0 Q) - ~ -+ 0)a-)-cnu c

CO 6nC 0 Sn 'd') -- (D.

0)~ -D. T- -0 0 =

E W z cmE 4p

Sf 0D) "0 = Sý C 3 - -a
E~ S0 S1 a) Q*z - -

d~r E

4) ca 0) 0 CD CV

0. M 0 _ C-0
.0~ ~ E 2 L

- 0J0 C
C.)L

CL S

a)l

CCu

>.a)UV a) -~ 0 c Ca)
r-~ CA) .-~ L-

0 c Lh r - 7 00 CLa

E ' ~ 12 E8 c). (nUC)) C am a) C- 0) Ca c

025 0

E as.~.. a) E V2c

"') 0 Oa) 00 ccc* n

a -.)c (D)) cnC a)_ a

(D Ect > CD CL a
CD~L. *0 U C02 6

> Ca.- a CL:) ca 0

(NuH ~ E 40 (1) 0) 4- <0
OC E . N 0 J-f CCCD)00

U) co a)CD E *
-r0 E *6 V ~ L Eo -0

0 as . 0 0) CL c

cz C0 a)C *0) USc
Vn cb*. m (C O) .Cd U

C22 CdC E0 (D~ (D>0S= "

r- a) ca0 w:4
u

0a) 4- E cz ~ ~ ~ '- ' a

_z a)~V E O , A--d~ a)
EC cu2 ar E o ,-

Uz a) - ' CY o U) %- C307

CT-1 CC ->--'-'-9.a i-t-0

zz CE n E r- a)C D c c- ~
E~)Ct 0- 0Cd0 a)z u cu

cn ..C D) .a 0 s -
o~a En : F L 0 DC) a 0

a)
4

) C: :3 N) Cn C c)C/

co (DC:= (D :3 a).~ cD oO
a) c 0 C0

E E 0 0 40 -0 0

00

eE E

~0

4).
LM C->) I o -

EECJcc* I - L
C0)

0 0 C2

Cf co

0 0 0 00 6 0_

D o0 a)lI

E 00E- C,0

Eca).

C 0) E-
0) 0)

4-

CU) r- C:~:

00))

~ 0) Z 0)~ a) 0 0

2 c ~ co Cb C :
4-) 0 CO.) p_2a0 D:E -n

El c E i)0

C0 _ 0

0 E 0 S *

LM

0 CL

.01

0 m.

0JCc C.)

ow
LIU

n (1

c 0. -n

I Sl

t o, 0ca u a) 0. LM

:3 "oD 5D> 0 0

(1) 0 -0 c:oa O u E d-),
0 -Q 0. CD

>l coDCL

=) CDit

L-- 0 c: L:

0o a) C

a) N) .8 C~ ~ 0:ý 0 1
.C C 0

Co- 3 E(C 0P00 ~ a

0) 0 >>C 0)0 LC (L Cl
CO :3 0 CD't acoL. C) U

c m0 .07@ c% E C CL aCISC
>,a W)

(D-0 C.L 0

wn ~ 0 > 3 C u a ~ ,
*~ 0 u~>~E Cua 00 0a 0)Cc

0 U.
U)U)ao LZ- - - - , 0.o

C)U) -a)0 -0 c C (aC
oo on 0o.2uED2EEa o c c E a, 0 :3 a)*~ l

C: a, 0)E0(Da 0) E -c a --t0~. C C

X C C 0

a, c (D a,- w a) U a, a,
C 'r.0, 0 c C ,. 0L 0C E

CO LD Lo 0)

a) a, a) > CU COU 0 =1 :

0) C .- Cu

ol C Cua) a, a, 0~~Ž 0 E c

U Co -- CE - 0) - 0a, CZ Nc CL-

a) 2)l a) ca cID , (D Co m~U E 0
L' , -~ Cc- CL0

Wc.C (1), 0 (z
D 5a0 (n0 E0 0

V~u E~. wW W W0n o~ o 0
0
0~ c C

oaa .ý _r 0 co 0 -0 * *3e

0 S0 c So LZw0 S @

(Dco
0 _

'
cn CL

0U

00

Im m

EE
ClO)
mI) 0

(W W (
0 0

L.5

0(m 0
CD 0)

070
ChC

CL

-Jn Iowa)

.ctuI 2)i a)~aa (D ..-. a
CL~a U) D)).~ as D-0 , Cu 4-= 0 0

0)U a) caca c E U) U)
0 0 40

0) (3 (1 Cu (Za 0cU) C) Q)'a (

0 U) C: ' CO1.u

T) - a)

co m0 C13, ~ a

q) <() <Cyu '-C 4-, Sf
co . C Z A-c = :.C0~O C u L0 0 <)(C

a)~~~~ac CO ,~4 ~ C U
0O N-O UFm 0, 0

CuV 0 Cuca, w U- a) ~C
M ~ CI. CL E

(n-~ Au caw CuU 00. 0C0

:3)0 E , L- =U 0a N) V 0-
W~<C cu co() : 0
0'~u) QU) 7CE 3 t Cl
-0 CM ~ u (Ur0) a)a,< C-

CuPU) -4---c Cu
C:>~Cau a) 0(_

02U) c 7 U)Cu0 0 0' Cu OS
0c CA C) U c 0) Ez0

Q ZC:(E- - cn Cu a~)
aU) - * - Cu 0 -6 cm

-o E aC) -08 Cuo, tm <2 CL

E "m U'- Cu z'a0 Cu
_ UE a) = (

EUQ CuE (1 c:u. ECu -c3 E

Ca E- C (Z. 0 a)U Cu CliD C.)
0U)0.m 04 ~ a)3D a)a, rL 0. C;u E

D)-4 L~0 as~Ž C aC) -L M.

(2i oCu (n ca "D - a) Co 10 a, E~~
-- 0. z - c 0 O. cCu) 0C c~ L .E

EW.5 cnj n E : 0~ ~EO _0 Q.

U)a < U)
a) 0 Qo 2 E cn .2-
U) 0 x - -)() C .

o c 0

cu w -0 -2 - 0E CL (5 ca 014
0 cu as

L-~1 C: : j.Uo~ ~~c m-, Hc- 50-(1 i

0 0 0). >

)

a

0E

CL~ Lo m 0

_% w0.0

"0.. .u
Cl)
Cl) co

(7))
E 0
0 C

moo Los I

00 N 0
C S UN-Mif

Lu 0Low0
0) 0

.2 -- WOMN C
if E

a ~0 cn cn

E CO) Cc
C0 CD O~

0 >O CO CO.) 0i

00 0~ 0.
0E C EVM Ef 73 E 0I

0 Ch6

CF) 0 0 0 0
CL M C E

Megaprogramming in Ada Course: Software Engineering, Workbook

UNIT 1: SOFTWARE ENGINEERING

UNIT SUMMARY

Much industrial software development produces very large software systems, consisting of millions
of lines of code. Such a system takes years to develop. It's a team effort, not an individual activity. In
fact, a software system is typically a joint effort by several companies.

Your Computer Science courses have probably concentrated on writing code. To write code requires
many skills. These skills include mastering a programming language, using algorithms and data
structures, and using a compiler-all fundamental skills you need each time you create a program. Yet
despite the need for these skills, they are not the most important ones professional programmers
possess. Writing code is the smallest, easiest part of developing software. There are other activities
that consume far more time and require much greater skil.

Programming in-the-large (that is, developing large software systems) is very hard. Most large
software systems are delivered later than planned and contain bugs. Many people even believe this
country faces a software crisis because programming in-the-large is so difficult.

Why is developing large software systems so hard? Much of the reason stems from two factors: change
and complexity. We will study change and complexity in this course.

Once software is written, it changes. This is a fact of life. When you write software, you seldom
anticipate all the ways it will be used. (Consider that, as of this writing, Microsoft Corporation has *
produced six versions of DOS, six versions of Word, and three versions of Windows.) Also, you seldom
discover all the bugs. New uses and bugs call for change. The problem with change is not that it occurs,
but that implementing a seemingly simple change often requires huge amounts of work. If you've ever
made a change that rippled throughout your program, you understand why. Then too, think of how
much more work you would have if you also needed to change user's manuals, installation guides, and
other supporting material that accompanies large software systems.

Programs are complex bec~ui se of the sheer number of details inherent in them. No doubt you realize
that the larger your progr am, the more things you need to keep track of. But really, complexity only
truly manifests itself in team settings. Though you may understand your own code well enough, you'll
experience troubles explaining its inner workings to someone else (you'll have a chance to try in
Unit 2). Therefore, when you write software in a team, you spend much of your time communicating
with other team members about the soft-ware. You also spend much of your time writing technical
documents that describe your work. Management briefings, user's manuals, and design reports are
examples of such documents. Therefore, complexity necessitates communication.

Change and communication make developing software potentially very problematic. For this reason,
this course shows software development to be-an exercise in engineering. This is why Unit 1 introduces
software engineering as the preferred way to develop software. The dictionary defines engineering as
the disciplined application of science and mathematics in making systems that are useful to humanity.
Software engineering is applying science and mathematics to help you make useful software systems.

When you practice software engineering, you follow a software development process, shown in
Figure 1. The process breaks software development into a set of coherent steps. In each step, you foci 's
on a particular aspect of developing software:

_____ ____1

* 0 0 S S 500 0

Megaprogramming in Ada Course: Software Engineering, Workbook

0 In the Requirements step, you focus on the problem you must solve.dn n

0 In the Design step, you focuscus organizing a solution to the problem you defined in the
Requirements step.

a In the Code step, you write source code, implementing the plan you created in the Design step.

& In the Test step, you test the software you created in the Code step to be certain it meets the
requirements you defined.

Focusing on specific areas in each step helps you deal with change and communication problems.

Requirements

Define the problem.

Plan how the software will be organized.

Code

Implement the plan by writing the code.

Test the software to make sure it works.

Figure 1. The Software Development Process

Programming languages can also help you deal with change and communication problems. In this
course, you will learn about the programming language Ada. You will see how a software developer,
through careful and correct use of Ada's features, can facilitate communication of necessary
information to other software developers in a team. You will also see how developers can use these
features to lessen the workhi ad in response to change.

0 I

I

' • •_______________O

J2

Megaprogramming in Ada Course: Software Engineering, Workbook

UNIT 1: SOFTWARE ENGINEERING *

GROUP ACTIVITY ',49

COMMUNICATION

Your Student Government Association has decided to purchase a vending machine and wants you tl
build it from the following parts:

1. A money acceptor

2. A change dispenser

3. A set of food dispensers

4. An item selector

Split into groups. Allocate the parts among the people in your group. Working independently, •
everyone must write down which other parts they think will interact with their own part. When
everyone is finished, get together and compare your results.

3

1i • • •• • •• •

Meaprogramming in Ada Course: Software Enginecring. Workbook

HOMEWORK
Look up the definition of engineering in a dictionary. What does it say? Based on this definition, what b

do you think software engineering is?

I

I

• • • •• • •

Megaprograrmming in Ada Course: Software Engincering, Workbook 0

UNIT 1: SOFTWARE ENGINEERING

TEACHER NOTES FOR EXERCISES

GROUP ACTIVITY
COMMUNICATION

Your Student Government Association has decided to purchase a vending machine and wants you to
build it from the following parts:

1. A money acceptor

2. A change dispenser

3. A set of food dispensers

4. An item selector

5. A coin return button

Each of these is visible to the person operating the machine, Behind the scenes, however, they work
together to provide people with vending services.

Split into groups. Allocate the parts among the people in your group. Working independently,
everyone must write down which other parts they think will interact with their own part. When
everyone is finished, get together and compare your results. 0

Figure 2 depicts one possible set of interactions.

Item Food

Selector Dispensers

Money
Acceptor • Ccuin Change

Return - - Dispenser

Figure 2. Interaction Among Vending Machine Parts

That is, the money acceptor lets the item selector know how much monoey has been fed in to date. The item
selector notifies thefood dispenser when the person makes a choice and arranges for change to be dispensed
if the person has fed in more money than the item costs. The money acceptor also notifies the coin return
how much has been fed in; if the person presses the coin return button, then the coin return has the change
dispenser provide change.

This is only one possible solution. When students do this activity, they will probably conie up with conflicting
ideas of how the parts interact. Of course, if they had agreed on how each part behaves beforehand, they
would not have had this difficulty.

This activity illustrates the need for communication in software. Too often, group nmebers begin working
without a clear idea of what everyone else is doing. The result is akin to what the students will experience
in this activity.

5

0 0 0 0 0 0 0 0 0

Megaprogramming in Ada Course: Software Engineering, Workbook

HOMEWORK

Look up the definition of engineering in a dictionary. What does it say? Based on this definition, what
do you think software engineering is?

Dictionaries define engineering as the application of science and mathematics (some add arts) in order to
make properties of matter and nature useful to humanity in structures, machines, systems, or processes.

Software engineering, then, is the application of science, mathematics, and arts (to appreciate the artistic
component, look at some modem multimedia applications) in order to make properties of matter and
nature useful to humanity in creating software systems. There are two types of properties:

1. Properties of matter and nature. These come from the problem you're solving. For example, if you
are writing a program that calculates the time a balltakes to fall when dropped from a certain height,
you use properties of gravity as determined by the laws of physics.

2. Properties of software. Software is not matter, and it does not occur in nature, so we must consider
its properties separately. Software properties include algorithm execution speed (the big 0 notation)
and memory use. These properties are what make up the disciplin,- of computer science.

6S

* 0

5

• • • •• • •

0.

rU

cI

c~ch

S

r~ C4

0 U)) 0

<<

00,o o
0 c __

0"- (D

m . - 4i--

.U_ .2_. o -) E >

cE w coo • •

CD C C 0C~
can) 00 5

(D- C - ca
0o -a t•: 0 .o, .

•- 4-.~ C. _.• •

C~CD

a)~~~ E~ U) can 'M C"" 0" C E

C .- 0 (D .W
o E- r- 0I .

cn)

cy 00.C 0 CD -6- CD

u C z(

C/) 24- > % -C I

0 z C 0) ca 0 (D

LU 0

ccA

Cý cvi 4CL

ou

o .. 00 0)
-o E E cu
- ~ 'a c C.

c Im
cn, L) a) 0n 75 C
0. U) .c .
Cd 0 U~ -I- lz
E 0~ E 0 .

L) cdC 1-- .0 L> 0

7 5 0- >~ C 0 >
o O U J) a)o C >

0 cd 1. 4- 0 >. ~ C)
CZ -D0 o c daC

L) 0) CDC m -

u.C0 a) -li _00n 0 0 CZO (D Cd=3 U

*-) a- CDa)C
4-) -0V 0

C.C Ca) C) ~ Cd > Cl-o ca
0C. 0. 4-

4-c W- n
CD 0 ~ 7a 4-6 a. cu 0-~ 4

E m > C 0C %- aC
dC 00 c. 0 0 .

E - <~ a) C 0) o=E

4-- 00) Cd0
0) c a) Cd C

CLCI 0 n a- 0 Cl m0
70 Q (09

Ca a) CJE-)a)

cOc, ca0 o)C a) I: I
coL 4- 41 - M0

Cl) 0)~ 0 o- C: U)

2 0 = 5, 106 0 0 0 a)

L0'

CLC

.J~

o~~h 0

d) G

0 -)

0.. 0- cc<

0L
0 LoU((US

ol

as104 -Z, _) (1 AU

-6 0) r 1) U) -2 U
CL)00) cC: c

Coo 0 3n 3 0U
CUL 00 .9? ~

4) 0 a) U 0) ('
-0 -a

0l,
- (U t_ (1) a) c (D

r- =U~ cu EU m. 0d CLlCA0) -ý -C 3w "~ (U a) " L a 7
El C Eao MPl co 2~

V) 0U ' -- 0 C.) CL

0) 0) 0)oC
0CL >,0 >1 (A Z I r

aU ~ o.) -m0)
(Un 0 a) -- a 0 c L

L_ > *Ew0 a w - ~ :

(UL4 ()a '0 C-a
0~~~ E -Ea) IE

-C - L- Q+ 4-
wc- >.o - .O

E u-

"" o -O .a) co

a) m

02)S Q -0) CUI -7,--

0 0 CD
00a) 0 E EJ 0Ca) >-0I

0 E 0 - >Ir -* '-E 0 00

(D 0 Ew :3-0 a ZU
CL - E ~ +-.o.0)om (D)

co a) 0 (z0 ca))~7 o>
00 0 -

V _ m 15 -5 0

0.~ a)U 0 0 0 4

0 EL(D - o 57R 2 c >1'
0u(CL ~0 Ev E -t (

r-L§~~ _ r U0-I u 0 0 O0 -C U) 0)

~.- 0 0)U E~ o Uo Cj0 0 (

.2 E -- 4- c a 0) - .c.. Cln 0-
- J 0 Co a

_q %0Z0 00 CZ 0) (a) 0lW

U).U - 2 tt - m CI

0 c 0 E 0 E coE 0)5

(Z0 0 - 0 0 0 0

oo

r.L

*0
cc1

Ea 0.0

Co 0E

o0 CM '-
CL U)

CL EG u) u
00

00 I CO

-D E

CC'

E E

0 W U)

Ix

-c~0
0. >>C

a) COQ0
ECc$ O -a 0)

T5 0 0 c 0

ca. 0 ~ (1 -0

0) V a c LCc

Q- r- -.-. :E .0 C
C L) 0 r_ O

(n a) c o06 (/)-a c
0

0C o 0)4 -l 4

-C.4 -0 0.- CL

00 0u a) E E
(O~ Cl '0 - =

0- 4- U).- U)

0 C0
a ~ . 2) 6) a) o

E .4- 0 0 ' 0_

co ' o - zD 00
C) X- 0)0Cý a

2 z cmC0)
4 C7O 4- -.C
~.O~0) Ott)) 0..

03) U)O Q:. (0 --n
c: 0.C ~ C~:3 Q 0

E- S a a...c =E.

>00 >.0 E4 -mc > "

00 C
c-) ~ 0~ a) oco

Lu CU)~C - .- 4 a) (Z - C

oi >ECi 0)0 t- 2 ~1c-o -
a) " a)- 12

> L > o0 E- o 0

=3 0) 0-V U) UC 1

0 i 0 0 > c S
> CD

KCO

0)0

II

0 m

U..

0~

u6
Cm >

oo
0U---- o

% LM

0)

L~C 0 • • • •

E. N

EIE

tn

ii *0

I- U) !L

4- .0) 0
0.Ccjn r- (

4-~ ~ --4(I*-a0~-

CCO 0 C

< i co0 0

o-)a)~ .- -- Zý a)
0 C- A

ECU C:U) C
.0 ol 0

0 0 r-a :3 c a) w o a

a) 0 UY W&a)) 0

~4- a) cz 0.
~4-a ra) 0

C(n a) a

0o Ci) Cl Q) 70~

o D *.E 11. U)L , -0 .

W-- CD :3o

o~E CD U
04- - 0 C 0~a CLE)) CDrJ

a) cz)

4-- W. 0 0se4- ~ 4

En . -5 E 'Z = 4-'-

0 L-a .Z- J 3:-o *.

cz ag cn E4C. c: Cd Et

U)' Q Cc 'i-a)(
=3 CO -mo E o O

rrn0~ E- cz r-:3

-04 (dOE0a .- +-c1
04 = 0a 00) 0

L L- U)O ~ W 0
W- *- 4-
-o 0 '. wo eCi) wao~ 4-~ cn Z 01 O)C -,ý

S 6 0 6 o

4.04'
00

(00
0)o

Eui

tuia) a)0

a) Ca cn(

0, (a)LU cu

CD -m CL

a) .40 a," -

4-c 0 0~
E .- a~0

a,
C'EL.

2 CL C1
U) C, E Eo

a) C)) a ~) CJ n

U)) .0: Ec
E 0 aa

0EoCL- ca

E~Q c :
~a) - CZ0 CO

0 0
c= a,.(

0--

(0 0 4- 0) a) C.C

4-o. r--C ¼. C: Oc,0
co0 '. (In

cz Et.4UU 0 C)

L- L- U) 0c

co 0. CL CD (n"a 0)
0 4- 0. a, a,)

0) 0 - C) a, a, a,4- CD C Z z cn a0 0.

S 4 - " - ~ C 0 0 o0- 4- t
z)U) (I)l C -~ >0>

so a, U) _0 cn =
.c: E L) (Z 4-

0"-~ C- .4.- "0 a) c 0 CTCZ
~o 0d co :30 (nC .CoE o>CZl Ca

on CD cn o C-~5 co C-

a) Co * 0 ae

+0 = I- .0 0 S 0 S 0 E

I

Los0

-M 0

llm E
0)~) o A

Z.a

aa

som

I- 4 0,. .-

U))

(a cc 0

EE E
ena

• -- (cu2 ,-- , -m0 - "" m0 .0

:::I A -'

> € W 4'€ -"_I _ .

...nc u . I-

• • •E

i" ~~a.

• • • J • • •• •

0~ CD t

-ov~

(DI~ 4
ca 0

o

w~c Eo0

-w Cucw- 60'

CuW0 0 u 4-a0 Su M
0,_~- m c3 E >.. Eu CD Cu

_C C . C ua, 0 Ca CZ
S - L E o0C 00 Z; -Cu

R a=.- . wcu - o a.

B~.a 2 a) _o 4- Cu

Cu Cu Cu wa(Z -. C .2- 2? :3 -C a

a) C: OCM:' -@ CL U)

~ao 0 U U C' 0 Cu (a1))
4-

-C Eu TL C)lu Cu tý 0)C ~

0 23
0f -c ao Il La

a) E20 i2.C 0'n _: (1)- : E)C
Ca, f;1)~' (L a, (L) 0 o z 0

C.a-~2 0 ~ 0. =~C 0) -a

0~~i~ X- Mua C 0))O W~ 0
0)r. 0CtC CL) Q) se

na,). o ~ -oo (1 0 *.0

C dn -~WU) (- nE a,)C

(U~~~~(t: w'1 0nU
U04- 0.o- cO.CL -2 U - .C 0' Cu) c co

(1 r~ " E>a,)C 0) C K -- c a) a, C (

~U 0 UE U

<C nC -ý L-a(.~ - 0 a, a)C C~l u .

'tu~ =u 0 - 0 Cu- a) pE C o.2Q Q 1U Ea
2

Ca 0 C cd Cu E

L.2~.E t- u - +- e - 2 E C

6-~~ E- 04CWuLa UC

w0C 0D 01 U , CuT C) o _ J C5 I J C

(1 0 0 = Cu -W o
_0 (U) 00r- c

F- 0 (1) -0 .0 C

Q) Z.-Q) E c -
.0.aa.q a- - = .- 0

W C:u ~0) aI) : C> a) Cu U.

o o r4H a) .C (D.~u H o

-0 w 0

0 Co- 'n n - (n CD 0 S E E) a

Lm m

00

- 4)

a CL

oc
CLu

CD Co.

cm)w 00 .. 2 *

S n.DCD. L4

0)~~ C uDoa
Lu CL 0 D

0 0u
:3 =

CL P'

'C 0 0 T 0,.

Cd a)a) 0
0 CU0

0, rd .0 -0-

0 . Cc S - C'. C/)
co. a) ~ -

to c~O E2 s5C 'o 0

-0 '-) t5 o0 D a)

co n) W-0 (n >.q c
0 (D(

0 0 *cw
0 E CU 0

E c - '
ca Ca 0) ED.. (n CD0 t; a

U) a)0 cc o'

cii .Co M C =3a
a C:l CIO Ž C CU jEa 0o) 34

xE o a) CL a)*1C

>E 0 0 EL
a) gAu 'a)c~ CI E) o

.C 0 0 0) r- 0,- 0. 0)..

lmdI) 00 0 a) 2)
0 - CUO C) L U 0C : 0

0 (Cc a - (D c 0 CZ) (1 -() . Cd

E 0 to m co .C
4

CL a) -0 = C
CL 0 U) 0 < co 0(0 a) C 0 CU (d~)Ea

" CL CL a)

c') Ca; ' EL C-C (D C -a E C~C
0~C 0 CI U CL0

!ECaj 0q 4(n.C 0 a) 0 0) CL~~~>1)0C CL~~) 2 - 0 a

(ZCU ~Ec c-ue (Ca'
-0~ (1) M n CD1 -WC

Žcnv'~ V 0)2 l)~ 2c 0)

-c -U)O.cC 00

0'(CU
0

r'' U)~ A)'- cL cor
U2o ~ M-0- *CL W-) ~

cCŽ C ECU E a)-la
U >M .0 a C 0 -o (d (1 -- O

Q (1)(1) , " -e CL

.00 CL') - 1 EWL .

.0 n
cn tm-L 0.00 :3E E0)

l-
0 U> .9' () = (1) Ci Dw i

C0 id 0 I
0C U)M- L-0) . .r - -s

-C~f 1 ECE(z0) C6L

-0 -LO<f..CL I)~ FU OF-:

ca~~~ *ow= 1
.ý:, r a) r~__m___"0_____D__

01

oooft%

0

U) 0 L.C

0 .~00

cn a)

00

UU
01

U)C.)

a- fw -' I

CO)

c- c
O0. 0) 3

o 0z C_ 0a) CL

_0 cm.2 ~U
0D '0 cCa

.~c m C LE 0)=* Q) :
0 C)L> 00~ E4

V C)> E-i- E.~ cu

a. CO EP: EM0
Ec cm) -o 0

(DO C1 0 CO - = L- a
(.1 C'-

CD. 0 W CD

4- '4--
2 0~E >~0co -

0 ýc *, *- >,
. ~ ~ L EU a'4)) ~

-Y Ed. a)-- /EC

0- L4 - L- 0)

I- .- 0) C:
a3) I... CZ.. U) 0)4 -a Z4-

o c C.) c(1 0 0C % Eco~
a) W1 ý-a)- 0.- 0

C: 0 ZE ~U) 0M.

0 0) 0a 0 U) 4 -CO a)
I., 4ý C E)Cl a) =- Ua)3

cts. =U ' '0U) Q)cn"4))-a Wcz
-4- CO a) V0

~ DC L(1) ~o 00
o, >1 -o- E) .YC

CCC 0) x Z0c
0~ ~ 4C 0 *;C 0 -j0.1)C:;E -E c3 o 5 ý

0 0Zc

E) U)D >Y~ -0 >%L--S2c
E))Z 0C. '- - (n 0-

> 0

EoCc '-00 0
4 -CL -C U) C o

0- 0 UU) Cn (2) E4~ E > c), U
La) ~ ~ (D a)>E7 U)

cC -. ~ 0) >sa c co -tz a(1)~~I V 4 -U) c

U)) -0U U) 4 cu oU)3 " 0 1 C(-Cz
O~CcoU yE Lý (3-0 JnvOU
E a) UC0(CDa 0~ (1

S 00 0 C.)0

__ 4
- 4-

.cO.

U) a)

CO E

(1 . -C X 10(

5,d C/o CL
(3) -0 c

Up 0 I:

0~J%~j U)'"U

(DJ)U -0- a)
(D se U) *ý -0 (

CY) E

cu 0 E

Sc Sz SD a) SSS

E o '2 C t O ;

10 E ~ CD4.,D

CL CEI*M C: c%

cmEo)c _ L)-o 00au

5 -0~ CD 0 0W
0-C0- -,)

:3CD Eý -c ~U
MCua) -0 0) 0 a0a)r

0 0 CD 0 0 > =) 0)
c)- a) Q a.) ' -C oC :

0~ CL C."CldC

00- ocn 0o-- o.00a

0) O 0- U) In 0
.0 jCD a)~ - .. CQ -cU c

0) : MC CD 0 CD
0

co c
-0 0t 0- C x (n >Cu CDO U)

20. 0 L .- *-% i. Cu3

'o 0-o- Uc

>, C. c~ 3cCo) C O
cz 0 ca
CU c =3

0 - U) -L 0 juC

ca Q o a) CL *01 =) MU co
(n CEn 0 E~ Cu cis~ 0u
=n -+SE 7 >

0 U)
Ua 0 =3 Ir- Cua c =

> ý ý 0)0C

M) c 0C UE
0u Cu _ > --.% u Cu:)

o, -Do Qc0 X 0 M 0u

()() C)U) co - = 0 mca
Cu-- 0 ")a)U0- c a)~ ca a- Mu 0 CD U Cu

c-0 2 -a)L 0 CD

~~ a- C: CL 3V

a)0) -3~ 0 E7
75)~ C 0 coaU)- E cC uuw >, 0u (n*0~ E LLC r6 0

- ca Eo C 6-C-
a) -3

CL~U~ 0) Cu CuC C E
Z ~ ~ ~ a CD) UU

cnCu > c 0Co- C)

a< .2 ac 3Co QX -0- cz _, o"U C/) o

C/)~- :3-o - M~ _O 2uO 'cj '

rL 0.

E~ OHo

0 S 0 0 a) Q u 0V 0 a)I

0

N co

K3 -

.4., (1- --
ald %

CZ C) a)C.

jM 0) L I.CL 0

0 C Y

CL (
C)~u E4.W0 O

E 25
CLa)a)I

Q) C 0CL

Co a)

CZ iz 0 - U - ;

+-a CL

(D 0 .,r M

oz E

-) C.) C

0 S S 0
0 *

C- ~ () (1 0 0 CD

E) 0 c/)

0 co Q z E c

> .2 E ca. ~ > a)

LoC a -*0) 00a
CL 0~ ý .0> !) s0c

_o C1 >

z g - Ccl) .0- I).0,
'-0 r- 0 =

0 . CO

(1) C: . Qc

_0

03c)
!L - (

rL -. 0 (Z V)COQ c

QE ~ :;:, 0.~-0 a)~.2
Ca)2 aO U.

a) .C . - 0 =_) I

0'5 C L n ')

= 3 a) C 3 0)C

0. 0 ! cr-

) -00 :2 E

c0)5 ~ ol E 0 =1t,0 Z0W)C

E CC C 0.

'0 CL -0 Z r-

_ D
Q

CL~~U C ThCL0
_D (D 0- D - CIJ >L.. C L

CZ - 0 c - 5
4- 2 Qc) >, 0 C)> C c

-Dc <)V 0- :3 4 U

~~ --- C..~~.) (15~I-ic~cL l

Ca 0 C: S 0 Sn E

CDn

00

4)

0c

CD toS

M C
0a. 0)O

CuC
*00

U.

- -0.
ICI

0 0

0)

_Z 0

C:i

00

0.-0

0 c o

'+- E

0 0
_0

co CY

C

C4-O cu)C

Co c 0 0

czc
E) CO

oC .C(C

0)-0 00

>) 0)0 oZ
0 c aOO

cU U C) C3 0

0 Cf ' o co

0/) E.- :5u .2 E2t 0

0) O~(l 4-,c Co 0 C

(D _ Qr M c, c

N3 0 76 ca C1 CZ

2 a u) ECO CC Coo Co
-ý -- co a)a w/ "o _0

En 0~ E-'g~ 75 c1% ara

- c u 0) I0Co

S: : 0 0 0 > S 0 0 M

00

%ilooo

(0.MOMI Q)
CL a

E. __ m3

a) 0

CME 0. SEM MN

16m _ M E

E 2CDo r.
0m 4. r o 0)

(1) ammm WME

0 0_0 EMC 0

0, o 00

Won SOMME V
10

I- (bCI

MIN" M -

Mcg3programming in Ada Course: Abstraction, Workbook S

UNIT 2: ABSTRACTION

UNIT SUMMARY

ABSTRACTION

Abstraction is a technique employed during software design. It lets the developer temporarily
suppress irrelevant details so he or she can concentrate on essential information. Developing software
requires defining a great deal of detail, so any techniques that can be used to consider information
selectively are of great value. Abstraction is one such technique.

What is "essential information" and what are "irrelevant details"? Typically, essential information is
the data you need in your program and what you will do with it. The irrelevant details are how you will
represent that data. In general, you can use this division into what versus how to help you differentiate
between essential information and irrelevant details.

For example, suppose a program is to create a file of integers whose content is that of another file of
integers, but in reverse order. You can design a program that does this as follows. The program will
read the integers from the input file, storing each one on a stack as it is read. When all integers have
been read, the program will pop each integer off the top of the stack and write it to the output file.
In this design, you have created four modules: one to read input, one to write output, one to hold the
stack, and one to control the others (see Figure 1).

:Mo)dule] - IModule Mdl

411
7

6

Stack 5

Module 4

3

2

Figure 1. Module Design for Reversing a File of Integers

When you're working in a team, it's important to create the module design. You can assign each person
one or more modules. This is a good way for team members to work together.

Recall that a stack is a linear list of values accessible only through a fixed set of operations: Push, Pop,
Top, Is Empty, and Size. This statement of a stack is an abstraction. It proclaims the essential
information-namely, what five operations can be used to access a stack. It also defines what kind of
descriptive information other packages can see, for example, the stack's size. It suppresses irrelevant
details, such as how the stack will be represented.

i

* 0 B SS 0 01

Megaprogramming in Ada Cotrrse: Abstraction, Workbook

This essential information is the abstraction's specification. In Ada, you can package the essential
information to show its interrelatedness.* A)

* package Integer-Stack in

procedure Push(Element: in Integer); ;r)
procedure Pop;

function Is-Empty return Boolean;

function Top return Integer;

function Size return Integer; S
end IntegerStack;

In Ada, the package construct groups together a set of procedures and functions. (You can also include
constants, variables, and data types, as will be shown later.) Everything between the first line and the
end line is declared to be part of the package specification. This package specification declares two
procedures and three functions. The first procedure, Push, has a single parameter, Element. This
parameter is declared in, which means that you must supply a value for it when you invoke it.
Furthermore, its value will be unchanged when Push finishes.

The specification gives you enough essential information to let you write most of the program.**

with Integer-Stack; with Integer-Stack;

procedure Read_Input is procedure WriteOutput is
Element: Integer; Element: Integer;

begin begin
Open(Input-File, InFile, Open(OutputFile, OuL_File, * *

FileName) ; FileName);

Set-Input(InputFile); SetOutputL(OutputFile);
while not End_OfFile loop while Integer_Stack.Size > 0 loop

Get(Element) ; Element :L IntegerStack.Top;
Integer-Stack. Push (Elemnent) ; Put(Eleinent);

end loop; IntegerStack. Pop; S
Close(InputFile) ; end loop;

end ReadIriput; Close (Output_]File);

end WriteOutput;

These two procedures both begin with the line with IntegerStack, nicaning that tile information

in the package specification of IntegerStack is within their scope. They can, therefore, within
invoke Push, Pop, rlop, and Size. Notice that references to these procedures and functions are
preceded by the package's name and a period; e.g., Integer_St.ack. Pop. This is Ada's way to avoid
ambiguities, since other packages might have procedures and functions with the same names as those
found in IntegerStack.

S
The package specification serves as 3 contract with other modules in the program. When you write
it, you are suppressing the implementation as an irrelevant detail but promising that you will develop
an implementation that provides the functions stated in the specification. In Ada, you place this
implementation in a package body, which is separate from the package specification.

" In the cde fragments, Ada reservel words are showti iii boldface type.

* For simplicity and clarity, the co(le examples omit details of file input and oit tput.

2

Mcgaprogrammirig in Ada Course: Abstraction, Workbook.

package body Integer_Stack in ra i io fItgr

procedure PuLoh(Elernent: in Integer) in

begin
Stack(Index) :=Element;

Index :=Index + 1;
end Push;

procedure Pop is

begin
Index :=index - 1;

e nd Pop;

function Top return Integer ig

begin
return Seak-Coratunts(Index-l);

end Top;
1

function Size return Integer is
begin

return Index 1;
and Size;

a nd Integer-Stack;

Other modules, such ats 1ýu.eAdInput and Wri te-output., do not need to know anly de~tailS Of the
implemenltationl. 'Ihey only need the information in the spocification. The Ada programmuing language
enforces this. Read_ Input anid Writie~uput can access the information in the pacekage
specification, but cannot access the information in the package body, They can invoke sizu hut cannot
determine that St...ck is anl array or- that size works by accessing the variable]i naex. Tlhe designer
of Integet Stock has hidden the irreleCvant details. This shows hOWY yucan use ab)StraCtionl to write
a module that shows to other miodUles onl1y What YOU consider to be essential information.

Ada packages htelp) teams design and imp~lement progr-ams using abstraction. A [cain wvill assign at
single developer the responsibility to deVelop a mIodIule Such as at stack. TIhe developer will design anll
Ada packatge specification for the stack. -I or- she will then compile the stack's specification and place
it in at central library that all thle other team members canl access. Thre other niernbers who need at stack

* can reference the abstraction ats they develop their own programs. This gives themn access to exactly
enough information to design and implement their own modUles. Meanwhile, the stack developer- will
implement the package body for- the stack, then compile [lie package body and place it in the library.

F Notc that other team iniembers can compile their modules without the stack package body, but they
* ~can't execute them until tile stack package body has been placed in the library!

3

* S SS S 0 00 S

Megaprogramming in Ada Course: Abstraction, Workbook

This page' intentionally heft blatmk.

4

6 0 6 0 0 6 0 0

Megaprogramring in Ada Course: Abstraction, Workbook S

UNIT 2: ABSTRACTION

GROUP ACTIVITY

Split the class into two-person teams. One member of the team should examine the following code:

type A in array (<>) of Integer;
procedure p (pl: in A;

p2: in Integer;

p3: out Integer) is

u, m, 1: Integer;

begin
1 :a'first;

u := a'last;

while 1 < u loop
In := (1+u)/2;
if pl(mi) = p2 then

p3 : = w;
return;

elsif pl (in) > p2 then

u nIl--1;
else

.1 :- in + i;

* gind if; * 0
end loop;

p3 : d'Lirt- I;
end p;

Describe the irrelevant information in this code to your partner. In other words, do not discuss what
you believe is the purpose of this code. Instead, discuss only the algorithms and the data it uses.

Your partner is to guess the essential information from your dcscription: what purpose the code
accomplishes. The essential information should he described in tenms of two things:

a The value of p3 when the procedure finishes executing

a The name of the procedure

I• .

L." -- - -" " := ": .. . - • •l -..i ,

• _

Megaprogramming in Ada Coursc: Abstraction, Workbook

I

T h i s p a g e i n t e n t i o n a l ly l e f t b l a n k . O

6I

iI

I

• •

•
••

•

•

' a m lug g ri
m m r mmmm

lnl
m l lue• t~ l iml l M~ lmm anl mtnamm

•' n =am-lrtcd
ra-.

m .. ,,,

Megaprogramming in Ada Course: Abstraction, Workbook S

UNIT 2: ABSTRACTION

TEACHER NOTES FOR GROUP ACTMTY

Split the class into two-person teams. One member of the team should examine the following code:

type A is array (<>) of Integer;
procedure p(pl: in A;

p2: in Integer;
p3: out Integer) in

u, m, 1: Integer;
begin

1 :I a'first;
u := a'last;

while 1 < u loop

III : (1+u)/2;
if pl(m) = p2 then

p3 := m

return;
elsif pl(m) > p2 then

U := i-i;

else
1 : I II + 1;

* end if; O
end loop;
p3 := a'tirst-1;

end p;

A jew words are in order to the teacher who knows Pascal but notAda. You may wish to rewrite this example
in Pascal for your students, since the purpose of the activity is to understand the algorithm rather than to
learn Ada. In any case, here is some explanation of the code.

a The notation < > in the top line is Ada's notation for unconstrained array bounds that are
determined when alproredure is called. Thus, any array of integers can be passed top. The notations
a Ifirs t and a '1 as t (read "a tic first" and "a tic last," respectively) are the upper and lower _
indixes of whatever array is passed to p.

h Instead of Pascal's

while condition do begin
statementl;

statementn
and

Ada uses

while condition loop

statementl;

7

* 00 00 0 0 0 0 *

Megaprogramming in Ada Coursc: Abstraction, Workbook

statemeneftf;

end loop;

* Ada's re turn statement causes control to return immediately from the procedure in which it's
executed.

* Instead of Pascal's

if conditioni then begin
statementi;..; statementn

and
else if condition2 then begin

statementa; ;Statementz

and

else begin
statementA; .. stateroontZ

end

Ada uses

if conditioral then
staternenti; ... statementfl;

elsit condition2 then
stateinenitu; .. . ;statementz;

stateasentA; .. . statementZ; *
end if;

* I Matching each i f with ant end i f eliminates the need fr~r begin blocks. Note also liite el sit;,
* ~which clearly shows that c'ozidi tion2 logically matches L-01di tioni.

D~escribe the irrelevant information in this code to your partner. In other words, do not discuss what
you believe is the purpose of this code. Instead, discuss only the algorithmisand the data it uses.

Your partner is to guess the essential information from your description: what purpose the code
accomplishes. The essential information should be described in terms of two things:

0 The value of p 3 when the procedure finishes executling

* The name of the procedure

* i The procedure p is a binary search algorithm. The identifier names are deliberately abbreviated to make
the activitv more challenging. A better declaration would be:

procedure PerformHBinarySearch(Values: in A;

ElemnentTo_SearchFor: in Integer;

Location_0&Elenent: out integer);

This procedure specificationi succinctly captures that essential informiation which muist be known to
developerv that use this procedure. However, as they write their miodules, they do not care about details of
lthe implementlations like lthe identifiter names.

8

Megaprogramming in Ada Course; Abstraction, Workbook S

The student asked to listen to her or his partner should, in effect, come up with this declaration. In other
words, the procedure takes as input a sorted array of integers (p1.) and an integer value (p2). It returns in
p3 the index of the value if the value exists in the array. If the value is not in the array, it returns in p3 the •
integer value that is one less than thefirst valid index into pl. The student presenting the irrelevant details
might say something like:

"The procedure has two inputs. One is an array of integers. The second is an integer. It declares three integer
variables.

"It begins by assigning two of the variables the lower and upper bounds of the array. It then checks to see
if the second parameter equals the value midway between these two bounds. If it does, then the procedure
assigns the index of the middle value to the third parameter and exits.

"If the second parameter does not equal the value in the middle of the array, the procedure resets the bounds
it will check. If the second parameter is greater than the value in the middle of the array, the bounds are reset
to the first half of the array. Otherwise, the. are reset to the second half of the array.

"This process repeats until a value matching the second parameter is found, or until the difference between
the bound is 0 or less. In the forner case, the third parameter is set to the index of the matching value. In
the latter case, it is set to one less than the array's lower bound."

This activity will be very difficult if students do not know the algorithm. If your students have not learned
about binary searching, you should substitute an algorithm yolt have previously taught them.

* S• •

t~~~-,..,, , • _ -•• . • - . • . . ,- ...,, ,,,, ,,

Megaprogramming in Ada Coursc: Abstraction, Workbook

This page intentionally left blank D

p

10

0 00 SS 50 0 St -,I

* 0

U UC

I_

..

4 (0

J
S

a.

IIE

6 1 ••••

0)0) O-E)Ž

x) EjcEoQ.

- o E
0 (0

In CD,

.0) 0D C -0- 2 CL 2
"a)01 in -T wC d 75

o- 0 a)1~E (D- s1
-0t, C; - ' C 0L~ 0

C,,nýc'> 0) ..-=.ý

cm ~ a -"6' _l _D 0" .>.c
r- C > 0 L.A 0

-M C:) a)C . C CD C

Z3 a),~o in u L'e .r >o U - 1 ~0 0 CD ~ >Q0W U C / C 0,a
~ _ E. c) cn .o j) -

(n T .- a
_ -0Uat) C 10 * *n cmc =<c.~ C: 0D 0 .

> 0 E CDC) 0 0 E0 :3 C

S

II)
S

C

0 4
U

0

S
0.

0
U - LI)cv, -F- -

�.U h� Q S
- I-
I-

C.

-- U�mI-
II-

S S 0

S

C,,

- 0)

o
S

C
0

C, I 0
C C C
W v-� 0

w)� LI

0
L.. () (� U 5

I)
'0

E
LI
0)o S
0.
0)
0

S

* S S 0 S S S S S 0

m a) cn
cmW cn"- ((

ca
UC5l CD.00Y) .fJW 0 0

) 0~ cE c>)

0 : 0~- CE L) Ec
0) :3co 00 -E 2o 00 =

-T 0)0 0(:a,~ c0 0~ 0 0)0~*

C: CT 00) C) (U

~: a)c'& E f a) 0 o
z 0 - V

E= 0 SO =3=
(n E a .0 C .0

0k..~~ c (U
S (0 E c a

(D cm 0 a
C, w-(U 0 c-oc2C1 03. 0

ca t~ oa) E3c)
a) CZ~* u 0(0 CZ (0 a

C 4- o - nUcn- ~ -

a) C)~ -9.1 "~0 0)
CL U0a LU, a) - 00 Co C))

0 co 0 ~r ~ U, nCl (z3

a) 0~~c o a) 20 E)U
U-0- U) _Z >4(Dc0 0.'

o)0 _ý 1,-) 0.C0 .n .- b
0 (n 0na) - -~ (U 21- (D

>~~c CC3) r a) a , ..

W- E -ý CO cn
0 4-C.)(4 Q 0 in 0 0 13 .0) 0

0Q-0 nC,)2> 0 CZ C. -0 i
+->~c ~ U 0 Cý Q)(0

C.a - CL 0a1
Z7 aC U 0 0) 00 Z E aC

.0 EQ, 0*, -- a m ()0 E

0 0

(D c -0 Sn 0n 0 0+ 0

V4
00)

Al 0

.22
* -

U'U

I)~(1 (1) C)& t
0C Och 4 -1 4 - 4 - e 0'3 a~(

CD 00
a))~ -c a)

W- Z c- E 0 - Cc0a

- 0"o 0 :3
c~ U)c 0 .o O0~ a) fla

m) :3UQ, c cna) :E ~0 (UL-.0
0 0 '.~-c r- - (D W

L.~a U) a)Q
U) (n W 0 a

a cz *-aDE~ F= 4-5 O 45- 2 -c
E 2c5 *c- C~4 -aZ 7

cl a) 0w - c a 0 co u p)C6 E
u~ LL" c C H L "

E (DO-: _ . 4 n.E 5
(D)U a) (6 7ý0 ' -0~ -0 L-

-0 " w~ Ea i-8 c 70 >,a) c
.0 CZ . 0 E Emr a). S0 CZa

- nc o a) CD
a) c(E *(D ~ a) E j E Ej ::0

E~ -0 a_; E " -(
w>0 z :a) U c) -- 0 C0

La) _ -0 cR~ co Uý 0)0 0ýVo4- c) E
a- U) ca -r &- aa)- - 0 Wa1a T 0

U)~~ C (1- co4 _0 0 + -C) o C-
a ~ 3 0 '-rO cu F- E

a) C: 2 cn
0) U)a c _0C/) 0 cnco a a)0~ 1

a 0 cn C3 (C () 5c/

U') W EC~)U 0 ~ L -- 4- +-
(EE.) CZ*~'i r.- 5, -U CZ ýoA d0 a)~

(Z -- CM Uu E ý 0- Mc (1) c - ' (n .. c~ .

> 0 C)4 Q C13~ >C4 .- :
HE~~ 'ELO E))).

a)aa~) ca a)0 -_r
co~ C) aZ ai CF) E 0a)a)P

(1 L S 0 E 0 E

C 0 0

mc L

0 C
LL 0

C)IS

mm C) cn.) C)C

E cz

.'- CCO
CL

- -') > 0) E

0) EUI 00 ::
00 co), CO 0 -0 a

i6 (OL.0

c r- d:-

4-~CCO> 0)

0 aO)

E0

IL.L

LLC4~~ CL2 n+
LC C) L

I-
E)

I

a) 0 C-0

CL - 11 0E 0:7 S

IDC 1 > 1 C c c
U) rýC CU~) (D c m 5

C) CO C

oo 04-' Q)
C D C0 c

_0)~ =
ca ~w0

i-I "0 M 0 0 C) cua)r05
Q) c%- > -o~ E joi

C: -U cý w 0 u4w:-0
o m CLC0 0 :.)ý '

C13G 0s)) c
c) c C: Z -ZE0 C13

Ca) 0z -:a) Zc1
U) U U

u)
0 >~ U 0 40c c

C: P '. co*

00) a C .0

2 0 5 ca
0c-- a) -a- = *

-coc

cli CD C: rU=C)U

(z 0 -0 U)c c-

(LI CL (n5

_. 2 CcaE 0d.~ 4t a)
z CZ~

>0 0 3E E c
CL CD a) 0

0 CZ
0) C

wa) _O x~w0 ~ ~ .0
0 - I- ~ 4.' a

4-o U)CL a -
-r-~~~U a)-U)0_ > ,r_

a- "0' -C 0) C) E
2-0 0

0 0 =3

C>__ >
* U

CE .2

o ... 0 -1 C

coo

Q)) 0 a)

aE
E cc1

Ia) CL Z _ _ _

I 0)

iL *,9 0~

_ CU 0
C. (1) LL

00

C) 0) 0

CQ - CD

CD -J
Ed LL
ca ZI

42 j2Ic a)

0) 0a - U
4- 00 0 0..~ aO0

CL (4)

0P

L* 0 OU 0 ma

2: -.;- 0 1- O.=
(0M =0 J- CI)- -IL 72 4)COa

0U CU: 0 cn 0)CZ- ::Ec 0i m D.90>

*. 0l 0o-E

CD c za) Vl 4- 8i-
4- -~ cno

=X .g) 0) LLa 0 ~
Fn CD 0 o = = a))W C-) D- 0

a) 70 - _0 =5* 0 3: E 4co

CZ CM- - ~ (a)4
-a- Wý0 .- D=M" DC

Cl) a)- >,~ r0 a)~ - V: C
a) cn - 0> 0. 0- -)0 .) I.0M

4- C:> 0 >

CM 0- CD~~C) a~m) 0) 0 ZWr$
cn Q Eo > -r *Lca C 00:l
a 0 a)f 0) r- 4-ca- 0 C)M(

ci 40 .6r 4-ca. C 0 - z

EI E~ c: 1)
a) C/ -FCZ c

4Z 0 V1) - 7

> 0 -0 :E (0k. 0) 1
o0 =q C:~ > 00C>

0z z 4. V CZ 4-1-.C V a)C3 r- 0 z 0)
0 E ~ o c) q- C::..0)

= a) cu'5~ 0' -0Ct 0 C
-0 1- cz ., =0 02 ~ C (1) 0

0) 4~. C))0.2 mO w~ CW
0F CZ CDU C.. Z~~>

4-0 W Ca C 0:0Eci)C/ (00)-al) :3.C a oniL >C 4 ~) C '
-0U L a - -) al)

~~~0 =~ , >'-
Q4 4- V= 0  4-~?0

U) ~ 0l ) -0* (0 C>
Cl fl F.( EEu) -0~~~E>l~

o 0 :L ." 4
CD 0 -CD (DWa)o Va nE(

a) .4. 70C
-0 C: C 0Cu ) t Y

S0 00 0: a) ca 0 0 0z 0



_ 
4c

a)r

0 0~

o Lu

L~ L.

0) =. O .0

a) aa

0.

a) a) 0
4)) 0

CL

LT)

0 ~0



C:c cma a0)C) 0 U)0 (n 0 a4
E: +ý -oa 2 $? E a U

E 0 oC

0) 0
_L (1TIa
0,04-1 0 (n .§ ) (U~ ) C):!

0nC CD5 -0

It~0 U -COoU C 0
4)(TU = Cd CL

Ca a)

c c E 4 as0) L-6-

VCa)O C) C o )4
(nU a) .)

U) ~ ~Z~j E)
E5 0C aU~ cr U )_ CD) C
c CL,, U) .4-0 c

-n (dL C CD 0 C:-( 0- L

Eu c E0 U)C ~2 CL cls 0 ) a)80 0) U)zu cn -0:tE
) C)) 3 E C

a) L 0C .- G
0-C a)

~ UC) 0 ~ ) .0- 0)_ U

73 c:d E CD 00
'a 0 C~ Cl) 'D 0 ** a) CLE

0*
.zM cdC a-x

U)0  0 4CfU)T Cl >D a)
cz)

cag r? O n0 CLCM~~ -0 M -;:9 . '5
0a) E a) -'o w))5 D.)C) CMdC a) W '

CL-. 0 C 0 ): Zd C). 0

~CO CO - OU)Ecn)M CI- c
cu ( ECL 0'0 C c0 o0 (

0r C) a Ca- C) -0 U~E 0)C a)c~. io .- (

o r - 0 ir L. 0 cd p

Ca C) CJ2

In0 - 0)L

cz - = 0 c S S*



II~ C0

J CC.a

H E

v V)

Em 0 bi



.0E U) :30 0) CL) 75-a
E Evr I.-C M, a

'-. ,- n - ~ . z 0,0

.C) = E ,1

0 C= cuo 7 D~ C. za

f e E na,(D
o'. c co' EO )

~Ea2 2,C E
-o o (D - a (D) 0. a

cn C) 0=n0a

~,*CDU)co- C : cC ~ l
CCo - 0m01

cm 0

0 < E r- a +.. OLC/) >~L
:E Cf aCo 0 0c.2 a

C: c 0 cu V E 0  E a, )a

CD-0C

,r-EDcD 0CD -ci E, C

coCU) ~~U0

CD can c ni 0

V) 0~ c V 53OCU) a2- §-& L)V *- -rC -0 -

- ~ ~ ;- ~- ?
D , CL -0 c -n--~ ~

a) Co V) U) co~c Co C L CcC)a

3: > a)0 D 4-L_(
U) C o2 C ;r- 70 4 C n NU)C

CD o~ E 0 0

Cfla,~CU)U, 5  Ec" > 0~~.

-0 U) -0Oa

-J U F-0C 0 O

-0 . 0 > So 10 0 0 a



CK)

a) 0 ) O
_ An

Lm Ici

75 ma

M 00

noa 0
0 L

440

0L I- 
S

cc E15 E)
L=) r L

0C
~Jg, j

1..MOc~



0 4 CO) C .
7:) :3la ) C/4-

U) s -E -a- C) C:

r- L. a)(~ 0

IIa~0 (1) L. CU)C c

(1)a cn 0 =2) 1
E 0 a) E E -0 c

C: 0
I! MUd( 6 0) 4-

c~ ~ ~ 0 -0o )a
0 %-

ECF. M~ (0 0w, *

(UE ) >- -

.. n L)a a? E CD(E~.C.
i---bU U ) 0 pa,

0 0 C0
Va, -) cz >, E > 0).LD a

(1) , T)( CZ - 0 a) 4-

U)~ V) W_ o 0 , : c.c
0 tfa o E 

V

L- c E ia 00
Sn *

ct CZ CD'a C .) 0 0 - *21 L

15~~a u)E - 0
cn ~ CF) a, .6- =- (D 0 E. *

E r- a 0 'aUO 0c C2 co
(D C 7 - U) 0)C1

o cm

0~~ ~ ~ caa)a. c 2 ' ,:Em C CM CE$S- 0 a a 0 (D-- C
_r CDO (D 0 0 00

0o E: (DE '~4

Q) (D' -.D W:U)

a. 0)~~~C cm)~ 1

0- 0 0 SU 0 0)

>- M - -( .(-- 0 r:



S

_ 4"
Ecc

00

C S
, >El* ,.. a

""0 0o '-

> z

W ~0 4.d0

0 cc c

E0-M IM 'r. E.00

00 "0 00"0 o .

• -- O.LG,-- ..

I 4) 0G ~

U0 all

U) ____E.EE
Cc CL



7a -0w (LEO

.vE Oc:( 0nS)1

SE .0 E
U)(U.3 c00 *cE ccn

CD 4)4. E 0 2.

r WU~ 0 CEL >'O a) C)

0 - :c Dc

E- E

CC C15 U) -C CZ

(D a) > C a0 ) 0a) W.!--
E E

" - r-M o u=) 3~C~ EE C

on O2~cU.( w).~
0 2 0 E5 o cn -a a)1--1

C ) co z 0 a) aO
OoZ. 00. C>,.C Ma CD r

a 0 a) 000 CI 0

C0 Co~ U) % C)) - cd -,

E -. ~ - Cc CDC" w 0-ao

-0 CýC
0- - 0 C o U) Cý a) 4-o3:

CD- 0W Q CC: a) ri
rc -E- ECD CJz E E

OL. ~ c CC0 r-" -. oa) a~ L-

c -uo M E -a- inu C 0 4an(

E~o ) o"a = ý:-5 M I=U)S

'a c" E -0 -5 -0 E 0



SEMEN

m an

@Oam *a~ !n
000.0

E cc .
NOMME) 00 0

U-- -0

CA.

0 0

OWNS. 0 o
ch 0

0U~0

0j i. 0.i 0V 0)
urna



0 ID)OC C:c : (1) ()c a) C

C .c 0 (dO) 0 a-ý C13>z 0) U)
ca > r00C *-

u.d) :- :E-c Lm E,

CD) .C U)~ 0CD

'D 4 C- 4- co
.rC/ 0~ 0DC

cc$U) 0 )
C_ -6. IVC _0)

Q 0 ) 0 .E C 4

I.- >J~ CO_ 0 E
a) -co ~ *0 ) C0 co U

0 0 CLc wC
c- b) , a) 0 C

a) co - -r U) a) ~
Uo .. U)0 o 4-:ECd )U

CL -0'a U)C C ~ C: 4-

(Z U) ca = -- a)
-Cd in L) 0 D ~ -4
0) (dU)Q aZ 0)c E v

E1 -m ~ E c- >, L- CD
a)U)- -0 4--

w) W- a) CL.. (D 0
E- C ) 050 a ) 0 -= 0c
co inC En 2td 4

alCI c U).0-
(nEco '' C.) Cdt:
*D 4).U)U ED cz 'DCU)

*;-c DCD0  0 U)u 0 o D
cz c -0E > ~ C)

a). a)V 3 " L C 0 U)
ca~3 (,0 > 0 C:

o) Ec co~Z, '-0 cn CO
.C 5 + - U) aI--a- 0

75 C0)D -0 0- 4...
'--=) -r- E.0 Q)J C. "C - C1

_0 o+-. (D a) .- 0i a - n
0. 0 - 0- (ZC1

CmCI 07'5 4 C
C:, CLt CLUU)) _ U

CD C0 1-U ) -0 =- ai a)0
0d)U C OHU) - Cd a'3

a) .E-.cc E -0 0 :370DU W- a)~E UW a) 00 8
0- U))~) 1

750 EU) - a)' M .- 0..* ~ C

- U) -a0.. C

C.) C, ) n( 0 0)
I--- - IU) (13

0- 2 "0 0~~ c~ 0 i co , 0
0L o aD _j 1D *-- -W

S0 - 00 C6 t 6 0



CLC

r_ U)

oc
0 0)

U) a,
0 a,

cJ CD -

IS 0~ S

EM E_
0 LO cn

>.ý (1) L~- .- "
L .. ~ . .. C.) 0 . J . J

_ C.)
0 L0) 0

- ii
_ z



a) aý w .;ý

CL r_ C

CL ,aEa 0 :E> ~ a

0 a) c a) a

'aC o V) a) Mt

-0 C => .H E) 0c
ýc 0 t- CD 2

.2 12 12C
o tD ~ w) a)0 ~E

c 'a CD w~~

c: 0 a' - 0. oc
0)ý~u33 OU).

2
.

0 "-E ~ a c * - ouc Ea E
E) C0)a o 0 M CD a 'o a'- cl

U )
0  *;- - 0 - c( 0 0

Or (.>D"2 w Cu E
co -r _ -5 0 E

a) -. a'o'a~

a) >, )
U) *cu > ~ U a) 01 c~)

(D E: Do C- G)c ) o) (n ' c Ea)~~ ~ ~ M Doa )r

V- 9 4)u 0 .. xC o1
-C 0 c< (-D )c _ C.

0 C MC 0 *C) 0 0 U) WaE =l a) E cc

a- (D >u CL .0. co() a)
.CL -- 0 4~- 0a
CU) a)0 00 0 10 0C

Ch (1. 0 )C 1u (1O). 0~ C U): 0) Cu
:E- -u C -j

W C: -~ -~ 0 Cc EM CL .e a) .2 E
CD~~U ccaa))

0 c.
C:) 0 0.0 ,- m " CD -C cu 0 0
(1)0) C>CS d 5a) W : 0 c: aC) :2V

0 U) CL %L IE .~ C ~ 0 C (,)t ,d 3W

-C CU o 
0 )  u - M-12 0a).

0 .-- Ec ) Cua
Y) _n ca CL0 a

Owa 0 Cý L(

0-- CD :3 C)a 4 2 : a) C
) C L a-.. a'D 0'm c . 2 1~ Cu

a) 0 coa c -oE E ~ t 2:
'a ua 0 -0

Cu0 Z' 9Žn-c r ()u (Dco

-C 0 -C>

0 01 ) a )

a~~L -U.f Oo' 0 ci -- c

0 a mM0 0 0) 0 o SY 0)



CD 
*

C:

(- 0

0' 6=5~

0) 0

.T) S S4C

0 CD

(1)) C: 9

7-a) * 
D.. a

_ _ CD . -

o0 -0 a) I (n E L

4-t CD (D-
0nn~C =3 :3cs j Q) S

C ý 6. '0 C C a-)V C *
_0 ia) (1) (C * J3:3 .

0 an C: Sa- 4- r ý j 1

L) . W (
5)j-J-

*0 00

CDC

-0do 
0

co _ 
Cn u Ei

4- C O (1) a,2

C= C CO .-

7F) 0 ~ L m

o *> m 0)V~

a3 aF 0) X__ OF

*U I.. w 0 . *i



La a) .- c --

0 0 3. ' u 0

_- 4" E 00
a)~Cl a ) * u E

.1-' -4- -4-z E

ci 6 ): :-c
0. %$. 9.- - I

Ec -a2) E 3 C F-0 0 3

0~~C JL Fi CO...J
o 0a~- ao:3) M > in

E- CC '0 a) I)~C)C~

nr ( E n 4)0 -- EmY T a) )C

U5 a) :t- Wi O C 6 aC~ a1)

E E

0C _j iC*- ~ -a)0 (D 1-0 E
a) c a) )C -0~- (n E w

-.- (n E-CZ C) _0 0n CD$) a) ~ ' a '
4-~(D =~~CC a) )r. -  cc: CD(N
a))73)-0 1 (D>-Z (ZE0 C:.-. -o ED .6-D ) 4 0 .~

~~..n ~ ýc a) C lj ~a2

T'~E 0 C.cC

o - 0) _ _

;C,; (1) E ýd~ ~a CD. ' c C/) 0 E

0 -a C U)J

CD "*)-o M F6 0n
F-U o- E < 2 E) cz 06 70

0 0 c 0 o0) a) 0S



0

U).a
iroo

CL 4) (l 0 
.

Oa E) 0ia

LM, Z 1)() a)

In 
-J

a) Ca) CL

C: 0o E
-D r-c

Ed F:- D

CL E ..- 9 a) ))a
aU)L.n 

Co -

C ) =3 =

0 ) 0 -U U ) ' J
o d L. 0E

LZ 0

E) a )~ cd CD. ( D E(
z D.-'- I c :n -

jI 0 4 -1 (0
jTL~ L- (

_ ~ ~ ~ 0 _ IoJ 
0

a).

_) E) (2 0
3- C) C)0 0

a) <D IC 0 ( a)C:ED-

E 0U.9 Co Si

*- 
0 6 00 0 ( D*



co .1 &- cu 00

cn L CD E) V CD a acs0
0)c - a) t =- -

0 ~ = = CLaa
a~ zo4 I' > c.) (D E 0

6 EE --

-r (D -1.

Uz ) c ( - a) wJ

co 4-' 0 >---)E ? .2 0
-, 0E C)X >0 0 a

4-- -- a) I-
a) c :3..- - (Z 0 0

a) -CC1 4-g 0 ~Ia-- ý; -0 C'-C
0) cZ cLn c0)

c o . -a v L-C~ I..

t: ~ ~ ~ a .Ce 0 ro 5 co Q)~
CL ~~a C~a a)0  -( D

U).CL t5ýa) L.E CL

o E~c~, ) _0 0
0) z4f
U) _0 _0 (Z U 0 L-

0)~~~ CZC C() )a

cn 0 ) a)'0c. U.Jc n 700 _z a
-0 CZ 0

0 4-' C:
_n CL C)c 0 cn

~ 0 -jcua)
0.U a) cz0 a

0 a) c-- >,0C. 0 Ca) n

co 0r-'- L 0 ) C)W ~ ~ W

Z c6 i2 I- ýý

0 Sn 0 w 60



4) 0-0
0"0

cch3- I

U) -)i

(U o~) (0

ALA

-~ .=nn~ UI1~.a

U),

0 0

K CO00

0O 0l cIn 0_C C w*

o- 0ocEE E4
(n Cl ) cj)(

0.. a)N0C -

M I 0 COL.
a,) .2+. '1" CJ0

=3 c c:
Mn c,. CN .2)

CL -0 >c~5 Z

co~~C Ca , (D

- d L- C:j ca~ aCL) CL0 L(

_ C.,



aP CO D 0 < coC I

O 0 ) C -0 .C

C: 0

~~c EE
C_)c c Y r- CL0C

0 C CO: CCol

o co r- UCO '- C C
... ýO -0 ; Iý,. C =)C 0) SE 0

= a) a 2aR(

3!- 0>, 0 CD C)a

I- x -'

a) cC a)

0-V~ a) U) .

(0 i m a cz

Ca 0 EE' c (

C: a) a) (nC c0

C: oa.

a5 XZ -0 CL'-c

'-..CUE 0,). 0~0 a)~~f a)0

0E C) '1 "C 0 (D~- 6 u
0J 00 -0O

CCD~~o ~ C 0 C 0 cQ I--, 0

0n a) CZ~ El (D -0

0 a) (n

C:~~~ ~ ~ (I) V)E__ -+ .
E~ ciI o~ ~ n EL T

a)) cnE(DC: a) f * E) :3 c-) -E E

0_> - E' C a- 000w3 0. a)C

S 0 0 C 0 0 oS



d)

Lmu
CL ~ Ch~I

00

oo

0n ~0) 00

0 ) n
E CuL

In 0'" o
~E >% %I- 0 >~

Cl E).

~~~0M E)) Cu

00

d) E cc 00 0 0 0)

Megaprogramming in Ada Course: Information Hiding. Workbook

.01 UNIT 3: INFORMATION HIDING

UNIT SUMMARY

The first step of developing software from requirements is to create a design. In design, you break a
problem into a set of modules and a structure. The modules, working together in accordance with this
structure, form a solution to the problem. Breaking a problem into modules is important for two
reasons. First, it helps you deal with the complexity of software because you can grasp the workings
of a small module more easily than you can grasp the worldngs of an entire program. Second, if you
are part of a team, it lets you allocate work assignments among the team members.

Stepwise refinement is a popular design method. In stepwise refinement, you break up a problem by
creating an algorithm to solve that problem. At first, you keep each of the steps of the algorithm
abstract. If you cannot express a step as a single instruction in a programming language, you refine
it into another algorithm. You do this for each step and for each step of each algorithm you create.
You keep refining until you can express every step as a single computer instruction.

At each refinement, you are making a decisicn. Once you have made the decision, subsequent
decisions will depend on that decision. You can think of design as a chain of decisions.

As an example, let's consider the problem from Unit 2 of reading, reversing, and writing. In this unit,
wc shall change the example slightly:

• The program will read and reverse a set of lines, not integers. The reason for this change will
become clear in Unit 4.

0 A stack is not used to solve the problem. The implementation chosen here more clearly
compares and contrasts stcpwise refinement and information hiding.

You begin stepwise refinement by creating a main module. This module describes an algorithm that
will solve the problem and the data structures used in the algorithm. You do not state the algorithm
exactly, but rather use procedures and functions to describe large processing steps. For example, the
main module for the Reverser program is:

procedure ReverseFile is
type ListOfLines is array(l..i000) of String(l..255);
Data: ListOfLioes;

Input FileName. constant String "input.txt";
OutputFileName: constant String := "output.txt";
I: Integer;

Read File(InputFileName. Data, I);
Reverse_Lines (Data, I) ;
WriteFile(OutputFileNamne, Data, I) :

end Reverse_File;

This describes a straightforward algorithm: read a file's contents into a variable named Data, reverse
the contents of Data, and write Daca to another file.

S

Megaprogramming in Ada Course: Information Hiding, Workbook

You next decompose each procedure. You might decompose ReadFi le as follows:*

procedure ReadFile(InputFileName:in String;
Data: out ListOfLines;

I: in out Integer) is

F: filztype; A'

Length. Integer;
begin

Open(F, InFile, Input_FileName);
Set Input(F);
I := Data'first;

while not End_OfFile loop
GetLine(Data(I), Length);

+I - i;
end loop;

end ReadFile;

In Ada, a procedure may have parameters that are declared in, out, and in out. The Unit 2
Summary described in parameters. An out parameter is one whose value may be set but not accessed.
A procedure can both set and access an in out parameter.

The notation Data' first is the lower index bound of the array Data. This notation helps you write
code that does not need to change if, for some reason, you decide to change the index range of an array.

You follow this strategy until no procedure contains any procedures that need to be decomposed. Here
are Reverse and WriteFile: * 0

procedure Reverse_ Lines(Data: in out List_OfLines;

I: in integer) is
CopyOf_Data: ListOfLines;

begin
CopyOf Data := Data;

for J in Data'first .. I-i loop
Data(J) := Copy Of Data(I-J);

end loop;

end Reverse-Lines;

procedure Write_File(Output FileName:in String;
Data: in Li'-, Of-Lines;

I: in Intayer) is

F: file_type;

begin
Create(F, OutFile, Output_File_Name);
SetOutput(F);

for J in Data'first .. I-1 loop

PutLiine (Data (J));
slid loop;

end WriteFile;

You can see from the above discussion that Figure 1 is the decision chain followed to derive this
program using stepwise refinement.

For simplicity and clarity, the code examples omit details of file input and output,

2

Megaprogramming in Ada Course: Information Hiding, Workbook

Algorithm for
main module

Representation of .k)

Data (array)

Algorithm for Algorithm for Algorithm for
reading file reversing writing file

Use a while loop Use a for loop Use a for loop

Figure 1. Decision Chain for Stepwise Refinement

Stepwise refinement has a hazard. The decisions made early are often crucial ones and, also, are often
subject to change. Because decisions made late in the design depend on decisions made early,
changing a decision made early often has global repercussions and necessitates many changes to the
software. Such a change is especially troublesome in a team because news of the change must be
communicated to all relevant team members. Think of how difficult this must be on a project involving
teams scattered across the nation at several companies. You can easily see why change is one of the
great contributors to faulty and costly software.

Information 'tiding is a design method that helps you deal with change. When you perform
information hiding, you use the principles of abstraction covered in Unit 2. You describe each module
in terms of an interface and hidden information. The interface defines exactly what other modules
can know and use: the essential information. The hidden information states things no other module
may assume: the irrelevant details (i.relevant insofar as other modules are concerned). This leads to
designs where changes are confined to a few modules.

In stepwise refinement, the early decisions focus on algorithms. In information hiding, they focus
more on modules. Figure 2 shows the decision chain for the Reverser program derived using
information hiding.

Decide to separate decision chains for:

* Modules that read, reverse, and write

* Modules that store data

Decide modules needed
to read, write, and reverse Decide modules

/ /\ \ Dneeded to stoe data
Decide algorithm cide algorithm

for reading input \ for writing output Decide data structui.:
for holding lines

Decide algorithm Decide algorithm Decide algorithm
for rcversing for main module for holding lines

Figure 2. Decision Chain for Information Hiding

3

6 0 " -_ - -" N I

Mcgaprogramming in Ada Couisc: Information Hiding. Workbook

Information hiding gives you criteria you can use to judge the quality of your design:

• A module is designed well if it does not know any of the hidden information of other modules.

0 A module is designed badly if the decisions in it depend on decisions in other modules (e.g.,
if ReverseFi le assumes stack is implemented using an array).

• Your objective during design is to minimize the number of badly designed modules.

The ability to judge a design's quality is an important part of sound engineering practice.

Once you have created your design, you must implement it. The Ada programming language has
features that help you hide information as you write modules:

* You can use a package to implement a module defined by information hiding. You can use the
package specification to show the interface. You can use the package body to implement the
hidden information. The rules of Ada allow other packages to access any information in a
package specification, but do not allow other modules to access information in the package's
body.

* You can use private types to ensure that data type representations are hidden information.
Private types declare a data type name that other packages may access, but they forbid other
packages from making any assumptions about the representation of the data.

Here is the Line I lolder module implement I as an Ada package. First, the package specification:

package Line-Holder in
type ListOfLines is private;
subtype Line is String(l..255);

procedure Initialize(Lines: out ListOfLines);

procedure AddLineToList(LineoTo Add:in Line;
Lines: in out List Of Lines);

function LineNumber(Lines: in ListOfLines; I: in Integer)

return Line; S
function NumberOf Lines(Lines: in List Of Lines) return Integer;

private
MaxLines: constant Integer := 10000;

type Lines is array(l..MaxLines) of Line;
type ListOfLines is record

Number: Integer range 0..Max_Lines;
Values: Lines;

end record;
end LineHolder;

The type ListOf-.Lines is declared private. This means other packages may reference its name and
declare variables of the type, but they cannot reference its representation. This forces them to
manipulate variables of type ListOfLines through the procedures and functions provided in the

4

0000 0 0

Megaprogramming in Ada Course: Information Hiding, Workbook

package specification, the only ones permitted to access the representation. In this way, the designer
of the Line_Hc ider package controls what is essential information and what is hidden.

The package's private part contains the representation of ListOf Lines. The private part is that
part following the reserved word private up to the end of the package specification. The private part
declares a list of lines to be a record containing an array of lines and an integer variable that can store
how much of the array is in use.

Next, the package body:

package body Line-Holder is
procedure Initialize(Lines: out ListOfLines) is
begin

Lines.Number := 0;
end Initialize;

procedurt AddLineToList(LineTo Add:in Line;
Lines: in out ListOfLines) is

begin

Lines.Number := Lines.Numrber + 1;
Lines.Values(Lines.Number) := LineToAdd;

end AddLineToList;

function LineNunmber(Lines: in ListOf Lines; I: in integer)
return Line is

0 begin * *
return Lines.Values(I);

end LineNumber;

function NumberOf Lines(Lines: in ListOfLines) return Integer is
begin

return Lines .Number;

end NumberOfLines;

end LineHolder;

The interface to the LineHolder package gives you enough information and functionality to write
the other modules in the program. The main module uses it only to declare variables of type
ListOfLineu. Unlike the stepwise refinement version, it has no knowledge of how a list of lines

is represented, so changes to the representation won't affect the main module-or any other module.
Here is the main module:

with LineHolder, ReadFile, WriteFile, Reverse-Lines;
procedure ReverseFile is

InputFileName: constant String := 'input.txt";
OutputFile_Name: constant String := "output.txt';
Input_Lines, OutputLines: Line_Holder.ListOfLines;

begin
ReadFile(InputFile Name, Input-Lines);
Reverse.Lines(Input Lines, OutputLines);
Write_File(OutputFileName, Output_ Lines);

end ReverseFile;

5

" • S • S 0 S • 0 0 0

Mcgaprogramming in Ada Course: Information Hiding. Workbook

Notice the use of the with clause, explained in Unit 2, to allow this procedure to reference the
interfaces of the Line-Holder package interface and the procedures it calls.

The owtit modules can also be implemented as Ada procedures. For example, the Reverse module
can be i-nplcm nented as follows:

with Line.Holder;
procedure ReverseLines (OriginalLines:in LineHolder.List_Of_Lines;

ReversedLines: in out LineHolder. List_Of_Lines) S
is

begin
LineHolder.InitializeC(Reversed_Lines);
for I in reverse l..LineHolder.NumberOfLines(Original Lines) loop

LineHolder.Add LineToList(

LineHolder.Line_Number(OriginalLines, 1), ReversedLines); I
end loop;

end Reverse-Lines;

Compare this to the stepwise refinement version. Notice how it uses the same algorithm but does not
depend on how a list of lines is represented. This is especially valuable in a team, where developers
need freedom to experiment with different implementation strategies and cannot risk disturbing other
developers. Since other developers have made decisions based only on the interface, and since
implementation strategies are hidden information, the information hiding method grants developers
this freedom.

Information hiding is a good design method for individuals too. You may have already encountered S 0
a situation where a change you thought would affect only one part of your program required much
more work than you thought. Information hiding helps you avoid this.

6S

F.

IS

S=

S • • . . . -
,[,-•,,m,*,..dii iI" 1 = '•'il~ll "1 q'' li~ fiif ll 6~l

K S • . , S 0 ri0

Megaprogramming in Ada Course: Information Hiding, Workbook

UNIT 3: INFORMATION HIDING

GROUP ACTIVITY

HIDING INFORMATION

The implementation of the vending machine software was developed using information hiding and
includes a module Change Calculation. The purpose of this module is to calculate the change required
from the purchase of some item in the machine. The interface of this module is as follows:

package ChangeCalculation is

type CoinValue_AndNumber is record
Value: Positive;
Number: Positive;

end record;

NumberOfCoinsUsedInDispensingChange: constant Integer := 3;

type Coin Money is array(1. .Number_Of_Coins_Used_In_DispensingChange)
of CoinValueAndNumber;

procedure CalculateChange(Price:in Positive;

Money Received: in positive; -

* Change: in out Coin-Money);

end ChangeCalculation;

Procedure CalculateChange, given a price for an item in the vending machine and an amount of
money received (both in cents), returns in Change coinage that makes up the difference. For example,
if the price is 60 cents and the money received is 75 cents, the contents of the array Change will be:

Value Number

Change(l) 25 0

Change(2) 10 1

Change(3) 5 1

That is, the change is 0 quarters, 1 dime, and 1 nickel.

The information hidden in this module is the algorithm used to calculate how many coins of each type
to dispense.

Here is the implementation of the module's hidden information, that is, the package's body:

package body Change_Calculation is

procedure CalculateChange (Price: in Positive;

MoneyReceived: in positive;
Change. in out Coin-Money) is

ChangeToDispense: Natural;
begin

jS

JS0

Megaprogramming in Ada Course: Information Hiding, Workbook

Change(l) .Value : 25;
Change(2).Val.ue 10;
Change(3).Value 5;

ChangeTo_Dispense := Money-Received - Price;

Change (1) .Number := ChangeTo_.Dispense/Change (1) .Value;
ChangeToDispense := ChangeTo-Dispense mod Change(l) .Value;
Change (2) .Number := ChangeToDispense/Change (2) .Value;
Change_To_Dispense := ChangeToDispense mod Change(2) .Value;
Change(3) .Number := ChangeTo.Dispense/Change(3) .Value;

end Calculate-Change;
end ChangeCalculation;

Consider the following problems:

1. Identify the hidden information in the Change-Calculation module.

2. Can you think of another algorithm to implement Calculate._Change?

3. You are to build a new version of the vending machine. This version will be sold in Germany.
The German monetary system differs from that of the United States. It is based on the
Deutsche Mark (DM). There are 100 pfennigs in a DM. Germany has 1 pfennig, 5 pfennig,
10 pfennig, 50 pfennig, 1 DM, 2 DM, and 5 DM coins. German vending machines don't
dispense as change paper money or coins less than 10 pfennigs.

German vending machines dispense drinks, but dispensing food hasn't caught on in Germany • *
or most other European countries. Drinks cost anywhere from 50 pfennigs to 1.2 DM.

Create a new version of the Change-Calculation module that calculates change for a
machine that receives and dispenses German money. Make as few changes to the interface as
you can.

4. Why is it important that you change the interface as little as possible?

HOMEWORK

I. Adapt the change calculation module of the vending machine for use in another country.

2. A rational number is a number that can be expressed as the ratio of two integers. Use
information hiding to design and implement a program that reads two rational numbers, adds
them, and prints the result:

a. Decompose the problem into a set of modules. For each module, state its interface and •
its hidden information. Describe the interface as an Ada package specification;
describe the hidden information in English.

b. Implement each module. Represent a rational number as a pair of integers.

c. Change the implementation of rational numbers to a single floating-point value. What
are each implementation's relative advantages and disadvantages? In what programs
would you use one or the other?

"8.... .- J. . .1 l .

Megaprogramming in Ada Course: Information Hiding, Teacher Notes 0

6
TEACHER NOTES FOR GROUP ACTIVITY

0

The package ChangeCal culation presented here illustrates how you can use the programming
language Ada to implement modules designed using the information hiding design method. The package
specification is the module's interface. It provides a single procedure that another module may use to
determine what coins, and how many of them, must be dispensed to provide a person with change for their
purchase. The package also has several data and type definitions. This is usual in information hiding: 0

developers will accompany the procedurics and finctions with data types that support their use.

1. Identify the hidden information in the ChangeCalculation module.

The algorithm is the hidden information, so it's the implementation of calculatechange. 0

2. Can you think of another algorithm to implement Calculate-Change?

Here's one. Though slightly more complex than the first algorithm, it's actually easier to change
when you do activity 3. The reason is that the original algorithm made a design assumption that
change was always dispensed using three coins. 0

procedure Calculate_Change(Price:in Positive;

Money-Received: in positive;
Change: in out Coin-Money) is

ChangeTo Dispense: Natural;
* begin 0

Change(l).Value := 25;
Change(2) .Value 10;

Change(3) .Value := 5;

ChangeToDispense := Money-Received - Price;
for C in Change'range loop S

Change(C) .nurnber := ChangeToDispense / Change(C) .Value;
ChangeToDispense := ChangeToDispense mod Change(C).Value;

end loop;
end CalculateChange;

In Ada, you use the notation Change 'range in a for loop to index each value in the array Change. S
In this case, the loop inder variable c assumes the values 1, 2, and 3, in that order.

3. You are to build a new version of the vending machine. This version will be sold in Germany.
The German monetary system differs from the United States'. It is based on the Deutsche
Mark (DM). There are 100 pfennigs in a DM. Germany has 1 pfennig, 5 pfennig, 10 pfennig,
50 pfennig, 1 DM, 2 DM, and 5 DM coins. German vending machines don't dispense as change
paper money or coins less than 10 pfennigs.

German vending machines dispense drinks, but dispensing food hasn't caught on in Germany
or most other European countries. Drinks cost anywhere from 50 pfennigs to 1.2 DM.

Create a new algorithm that calculates change for a machine that receives and dispenses

German money. Make as few changes to the interface as you can.

9

Megaprogramming in Ada Course: Information Hiding, Teacher Notes
S

Here is one answer. The lines in italics are the lines that differ from the original. The algorithm now

calculates change for a machine that dispenses coins from lOpfennigs to 2 DM. The interface had

to be changed slightly to support this, since the U.S. version assumed that 3 types of coins (quarters,
dimes, and nickels) were dispensed, whereas the Geman version dispense:. 4 types (10 pfennig, 50
pfennig, I DM, atd 2 DM).

package Change-Calculation is
type CoinValue_And_Number is record

Value: Positive;
Number: Positive;

end record;

Number-OfCoinsUsedLInDispensingChange: constant Integer 4;

type Coin-Money is
array(l..NuinberOfCoins_UsedIn DispensingChange)

of CoinVal,-ie_And_Nuýmaber;

procedure CalculateChange(Price:in Positive;
Money-Received: in positive;

Change: in out CoinMoney);
end ChangeCalculation;

package body ChangeCalculation is

procedure CalculateChange(Price:in Positive; S *
Money-Received: in positive;

Change: in out CoinMoney) is
ChangeToDispense: Natural;

begin
Change(l).Value 200;
Changu(2).Value 100;
Change(3).Value := 50;
Change(4).Value 10;

Change-To Dispense := Money-Received - Price;
Change(l) .Number := Change-ToDispense/Change(l).Value;
ChangeToDispense := ChangeTo_Dispense mod Change(l).Value; S
Change(2) .Number := Change ToDispense/Change(2).Value;
ChangeTo Dispense := ChangeToDispense mod Change(2) .Value;
Change(3).Number := ChangelTo_Dispense/Change(3).Value;
Change-ToDispense = ChangeTo_ Dispense mod Change(3).Value;
Change (4) .Number := Change ToDispense/Change(4) .Value;

end CalculatelChanget;
end Change_Calculation;

Why is it important that you change the interface as little as possible?

Suppose you are part of a team and are writing a module that uises this module. You will have 1ade
some design decisions based on the interface you expect. If that interface changes, you may have
to rethink your decisions.

i0 p

I ' I I ---- S 5k"l I] i l [I I rI r _• , : • _ • .5

Megaprogramming in Ada Course: Information Hiding. Teacher Notes

You will often find you cannot avoid making any changes to a module's interface. Ilowever, you
can plan ahead when you design a module by thinking of the things that are likely to change. This
is part of what information hiding is all about. The things you thi,.k are most likely to change are
the things you hide behind an interface. You may have to make certain parts of the interface
susceptible to change. Here, the number of coins in the monetary system had to change. However,
by making that value a constant, you can let other modules rely on the constant rather than on a
literal. In this way you can lower the likelihood of inadvertent effects,

• • S

S

S

0 S 0

• s • t • •• g

- - x r ,.

Mcgaprogramming inAaCus:Information H-iding, TahrNotes

'A

This page intentionally left blank *

12

Megiaprogramming in Ad& Course: Information Hiding, Teacher Notes

TEACHER NOTES FOR HOMEWORK

Students may do the homework problems in any programming language, although usingAaa will help them
separate interface from implementation. If they use Pascal, encourage them to use units (if your compiler
supports them.)

1. Adapt the change calculation module of the vending machine for use in another country.

In France, the monetary system is based on the French Franc. The coins are 1, 5, 10, 20, and 50
centimes, and 1, 2, and 5 Francs; 100 centimes equals 1 Franc. French vending machines dispense
coins from 20 centimes to 2 Francs, inclusive. Products cost between 1.2 and 8 Francs.

package ChangeCalculation is

NumberOfCoinsToDispense: constant Integer 4;

end ChangeCalculation;

package body ChangeCalculation iS

procedure CalculateChange (Price: in Positive;
Money-Received: in positive;

Change: in out CoinMoney) is

ChangeToDispense: Natural;
begin •

Change(l).Value 200;
Change(2).Value : 100;
Change(3).Value := 50;
Change(4).Value : 20;

Change-ToDispense := Money-Received - Price; •
Change(1).Number := ChangeToDispense/Change(l) .Value;
ChangeToDispense := ChangeToDispense mod Change(l) .Value;
Change(2) .Number : : ChangeToDispense/Change(2) .Value;
ChangeTo Dispense := ChangeToDispense mod Change(2) .Vialue;

Change(3) .Number := ChangeToDispense/Change(3) .Valuc;
ChangeTo_Dispense := ChangeTo_Dispense mod Change(3).Value; P

Change(4) .Number := Change To Dispense/Change(4) .Value;
and Calculate-Change;

end Change-Calculation;

2. A rational number is a number that can be expressed as the ratio of two integers. Use
information hiding to design and implement a program that reads two rational tu mbers, adds
thcm, and prints the result:

a, Decompose the problem into a set of modules. For each module, state its interface and
its hidden information. Describe the interface as an Ada package specification;
describe the hidden information in English. •

It's important that the students try to design the modules before plunging into the
implementation. They should try to come up with the answer to this question before

13

• S S • S S S S 0 *

Megaprogramming in Ada Course; Information Hiding, Teacher Notes

tackling Part b. However, it's also okay if they don't get the correct answer on the first try. 0
Engineering design is an iterative activity.

There are two modules, RationalNumber and Main. RationalNumber has the following
interface: A)

package Rational-Number in
type Rational is private;
function RationalNumber(Numerator: in Integer;

Denominator: in Integer)
return Rational;

function Add(rl, r2: Rational) return Rational;
function Numerator(r: Rational) return Integer;
function Denominator(r: Rational) return Integer;

private
type Rational is record

Numerator: Integer;

Denom•inator: Integer;
end xrcord;

end RationalNumber,

The hidden information of this module is the representatio:i of rational numbers and the
algorithms used by the functions that nmanipulate them.

The main module has the following interface:

rrocedure Read_SumAndPrintRationalNumbers;

The hidden information of this module is the algonithm it uses.

b. Implement each module. Represent a rational number as a pair (, f integers.

The following implementation takes the trouble to normalize rational numbers after each
operation-that is, it divides the numerator and denominator by their greatest common
divisor If your students have not yet encountered this algorithm, you may want to provide
itforthem.

1

14

Megaprogramming in Ada Course: Information Hiding, Teacher Notes

V package body Rational-Number is

-- This package implements rational numbers as pairs of integers.
-- The e tntage to this scheme is that rational numbers are
-- repre~onted exactly. The disadvantage is that numbers must
-- bu normalized after creation and each arithmetic operation,

requiring some extra time.

procedure Normalize(r: in out Rational) in

Numerator, Denominator: Natural; S
Remainder: Natural;

begin
Numerator := abs(r.Numerator); -- Find the greatest common
Denominator := abs(r.Denominator); -- divisor of the numerator
while Denominator /= 0 loop -- and denominator using

Remainder := Numerator rem Denominator; -- Euclid's
Numerator := Denominator; -- algorithm. The algorithm
Denominator := Remainder; -- ends with numerator

end loop; -- holding the GCD.

r.Numerator := r.Numerator / Numerator;
r.Denominator := r.Denominator / Numerator;

end Normalize;

function RationalNumber(Numerator: in Integer;
Denominator: in Integer)

return Rational is
0 r: Rational; 5 0

begin
r.Numerator := Numerator;
r.Denominator := Denominator;
Normalize(r);
return r;

end Rationalnumber;

function Add(rl, r2: Rational) return Rational is

r: Rational;
begin

r.Nurnerator := rl.Numerator*r2.Denominator
+ r2.Numerator*rl.Denominator;

r.Denominator := rl.Denominator * r2.Denominator;

Normalize(r);

return r;

end Add;

function Numerator(r: Rational) return Integer is
begin

return r.Numerator;
end Numerator;

function Denominator(r: Rational) return Integer is
begin S

return r. Denominator;
end Denominator;

end RationalNumber;

15S

• • • • • • Is

*, 0,•,-÷n :• 0 , 0 l' ':"I 0Ul 0 " 0 S~llli l 0l r

Megaprogramming in Ada Course: Information Hiding, Teachcr Notes

I This implementation of the main module goes through the rigamarole necessay to instantiate the
generic packages needed for integer input and output. That's not important for the purposes of this
assignment. Rather, have the students concentrate on the algorithm.

with Rational Number, TextjO:;

procedure ReadSum_And_PrintRationalNumbers is

package IntegerjO is new TextIO.IntegerIO(Integer);
rl, r2, Sum: RationalNumber.Rational;
Numerator, Denominator: Integer;

begin
Text-IO.put('Enter the first number: 1);

IntegerIO.get(Numerator); IntegerIO.get(Denominator);
rl := Rational_Number.RationalNumber(Nuxuerator, Denominator);

TextjIO.put('Enter the second nunber: ");

IntegerIO.get(U,,nrierator); Integerj1O.get(Denominator);

r2 := Rational-number.Rational-number(Numerator, Denominator);
Sum := RationalNumber.Add(rI, r2);

TextjIO-put('The sum is ");

IntegerIO.put(RationalNumber.Numerator(Sum));

Text_IO.put('/');
Integer lO.put(RationalNumber.Denominator(Sum));

end RsadSumAndPrintRationalNumbers;

c. Change the implementation of rational numbers to a single floating-point value. What
are each implementation's relative advantages and disadvantages? In what programs
would you use one or the other?

The package specification is identical, except that the representation of Rational changes,
Replace the lines:

type Rational is record
Numerator: Integer;
Denominator: Integer;

end record;

with:

type Rational is new float;

Here is the package body:

package body RationalNumber is

-- This package implements Rational numbers as floating-point

quantities. The advantage to this scheme is that it is
-- very fast for performing arithmetic operations. The
-- disadvantage is that the numerator and denominator must be

-- approximated rather than computed exactly.

NumberOfDenominators: constant := 10;

Denominators: constant array(l..NumberOfDenominators) of Integer
= (, 2, 3, 5, 7, 11, 13, 17, 19, 23);

I--

0 .. .S,,= ,,, Sm S rS/i S ••i• 0'r .. 0 '' 0..." ' -I' li 0I

Megaprogramming in Ada Course: Information Hiding, Teacher Notes

function Rational-Number(Numerator: in Integer; e
Denominator: in Integer)

return Rational is

begin
return Rational(Numerator)/Rational(Denominator);

end Rational-Number;

function Add(rl, r2: Rational) return Rational is

begin
return rltr2;

end Add;

-- Compute the numerator and denominator of r. The algorithm
-- is to choose for denominator the value in the denominators

-- array such that numerator = floor(r*denominator) and

-- numerator/denominator is closer to r than for any other

-- value of denominator in the array.
procedure Compiite_NumeratorAnd_DenominatorCf_Rational(

r: in Rational;
Numerator, Denominator: Integer) is
d, n: Integer;
dprime, nprime: Integer;

begin
d := Denominators(Denominators'first);
n := Integer(r*Rational(d));

* for i in Denominators'first+l .. Denominators'last loop S S
dprime := Denominators(i);
nprime := Integer(r*Rational(dprime));
if abs(Rational(nprime)/Rational(dprime) - r)

< abs(Rational(n)/Rational(d) - r) then
d := dprime;
n := nprime; B

end if;
end loop;
Numerator := n;
Denominator := d;

end Compute_NumeratorAnd_DenominatorOfRationul;

function Numerator(r: Rational) return Integer is
d, n: Integer;

begin

ComputeNumeratorAndDenominatorOftRational(r, n, d);

return n;
end Numerator;

functiox Denominator(r: Rational) return Integer is
d. - Integer;

begin
ConiputeNumeratorAndDenominatorOfyRational(r, n, d);
return d;

A end Denominator;

end RationalNumber;

17

Megaprogramming in Ada Course: Information Hiding, Teacher Notes

The differences between the two implementations may be summarized as follows: 4
The first implementation is slower It must execute the normalization operation after

creation and every arithmetic operation. Moreover, adding two rational numbers using the
first implementation requires three multiplications and one addition, whereas adding them
using the second implementation requires only a single addition.

The second implementation is less exact. The first always represents a rational number as
the ratio of two integer quantities, which is the definition of a rational number The second, •
which uses a floating-point value, represents a fixed number of significant digits.
Furthermore, its algorithm f!,r determining the numerator and denominator is accurate
only to two significant digits.

You would use the first implementation in programs where accuracy is of more concern than speed. •
You would use the second implementation when speed is of more concern than accuracy. You must
also assess what operations you will use most frequently. The first implementation will be both faster
and more accurate if you invoke the numerator and denominator functions more often than the
addition and creation functions.

S

*

18

0I.c

CC
3

I

CL
to

w07

0.

• • • ••
•

•

*m S 0,m• •_,- _

c 0 CD rU)

C) cn
cua)

a) CD n

o0 0 E

Ca).

a) a)

cr0 c L

>~2 0.C(

(D)C:a)

a)ES
mc a)a) Q0) ~ 0

oU C:chM
U~i. U)'

4a)-o) D CL
2.

CI 0 0 co)W

E>% a).0 a 0

Cz 0) c _ V0 - cm~ >, Cc -

~c W-O a))
0JQ UJIJ(0 0 U o cm U

U)~~~U. E 1 - - Co C U i

(D 0) - cn
)

S 0a 0 r- 0 *
-(n-- S-. E~." P~ z -0

w -- i:- -

00

CL

cvi

o

K' Co p

S° I]I

,cu

lu

u.• 0 0

N €O •

S• o0)
0 .• • .

'p• .,0

- C.)

i • Q• • • •W *

-- - , 2 22---? ..-- :- Z~ " ; • : r :-: • .. --• • r_ " 2.. ' .. . i .2. •- -- -- ~ r l

C'. 1pE Q c

I- o a)C~a) 0). 0.-

> a C:O 0) 6 s C4-' a)A

(D cd a :3c 3 M

~E 0* o a

a) a)CC 0

a) > (

%6- 0 ~ a) 0)~a =
a) (z E c

""aE E -- +a)0 Za0 3 o (DC - :=0CZ C
:3M 3a) L a) _D a s000

'- C~~- .L.. ci.=

0 >, -Ce)

a) 0

>- -C)c :> r 0a

CL o :3 CZ

CL E v a)_3 -
a) CD im~a oc c CL a

=~ 4- C "
>- a) c$(n ~l.. a

3: 70

0)Z7 CL a) 0
0 4- + 0U

C 0 E W C o Co 2 E 1 C 0:) a
Qj W -(D lc

C: (a) = = c : cn F-

Žcna -w) C

:3 as cJ C

co 0 c 0 0 c

1)0p- a Z0_

UT

00

E 7U

0..
00

((c

EE

a))
U S.

LiM

a)~ 0 0- r- co

(Co :0
0. -"D TO) 0) -

o ~ ~ 00 0C c) ~C
-- 0as.,

=) L 0.0 0 a)(o a0 0.~ a 0 -> >1 (0E .
>1 FA D 0 _o

-o (1) C)o.
_0 0J L- ". n

C) E ai . o .ca .'2a

-00 E cn~ InE)
- ~ ~ ~ ~ C CL la-E)~ C ~ -

.2 0 0)C o > >~
Q) 0-0 .2 0 a In CC I .

> CL w0 : :C

a) ~0 L. 0
0L .-1 -C'In *

C) (D< r) c ~ 0 Q .- a) 0
r- 0 0) U) InL M
_) a)) C0 E E

C.) a)X-) l
0 EC 'r-I.0 Cf) n

0 U) -~Cc~ m 5 WEc c

a) C) -2 1 0 EEcoa E

0~~ 0U' ~)~

CD 0 0) =-~ a)
c -~ (l) 00 :3 M

a)C 0~0 -D C) D M

-) - 0I 7n(
cu@ CD - CDC3 >C W (zCCI 4CO - W 0 C a) E)C>

0 : W- ")I CI
CD C -0) : C) a) (n. o 0

a
_ _ 0

0) 2
0

) 0-0w -y-C)
EV : 0 ~ a) E 0

> 0n

0 cal)- co) >)) 0 0~
>1 c 0 r- -0 L- >)U 'W a)

-C C o Zoa)a _0L

-~~~~ 3.u >)F' a)>E2 ~~"*
C) 0 ED 0 (1 41 . o 0 :~ * ~ C) C

0 >)C :LI _ U)** 0= *

0) Eo C 0 0 E E) a

0 in cn a)-0 Ir a) Dc
0n r_ a) *1 *L 0* '

S0 0 0 0SS 5@
_r Oa 0 -- : C3:C ma

00

0 Lo
0

00 mw
0o L.

0 0

m Q-

F0 E 0 0

> 0 0

UJe LU E

E -5 0 C0 Z,2 -) .-

a) cz 0 CZ .C.

0t +-0

oo = c9'5'n c 0.0

a)- ~j~~)C0 C--C 0 0 u..C
Co6 0 E(n0C

o) 0). - C CL cis

C) a) (vn a ccE0) 1 -- 0 0 E 0 u0Co
*C 0 0 a L>

0 i-D- ca a) 0 E-)
L~ - !:> i x -c

0 0o~ co'* 0= - - o 0).
0 W L.~oo (D0 00. :P .
Co Q o Q)C

0 =C 0) 0c c >%C 0

Co M"Foo)10C 0,U)w
.4.- S 0) =3 x - -O Ua

A., 0 0 o0 L 0t-
.5aL a) Om >, E 0.0

Q) CO
0 2 Ca.DU

CaD rr C a ... 4 &.. 0)
0-0 0- CUa).. CO .0C

0 1- .- ýd - Q Ca
0 .C a)oL E. C

a) 0)E-0) E 4 C 0 a) C
E : ~0~~ - 0- C .O- o CO.) _o) 1,-CI 0 Q 0) CZ >% CDoC
Co -C 0 (' a a

4- 0)l -z0 D
Cz c. ~ av7.. . 0

0) O)n~ > 0Oa) 0)i) CL
-5-~~- C)c

Cl) 0L 0)0 0 Con
Cl)~~(1 0 >)~aiia "~ n ~

C) ~ 0 > o (1) a)(

V) N -ý >'n C3 0c cQ . 1
CZ > > a) 0

-z .C (Z-- .0~ C>:)I -- C CL

CD-r- Ch S0 0 C SS

E

U) C (A 0

CD)4
1.M a~o NonXO

L. 00 0000 0S
0i~ -. z O l

lAO0 L

CL

LM
CCD

0
>1

0 C

al) %1-- _

0
@M

vp

0 TL '- Te-
0

V

Cui

oc) CL0

0 Q)) - 7
U)U) :)c C

ch~ EcL 6.

> 75
a) ") 0.. CD.C M

C 100 a0) 0CL
a C) C. E C

'Dc 0 EQt Et

acz -C 0) 0 1

a.) r v -ca cn
2

a) :E-r c.JOo >.05 r 9CýL 4

0) ..d 0)c a) X U

E0 4- >4- ;R w0-L-c
0 a n CL. - V CU CD Cc$ CDC)~ 0 (D 0 cz .CL E

U) *o - - iB(D E % -
(D ~ EC .-0 co :2 0~- c a0-0 C

U) _) _ cz a
0) 0 70

Eo c

t~2 O 0 0U) o0 2F (Du CO a))n
C6 L-- 4- 0 0 0E C

0)L c 0)C :U 2 0- cl) OL U)C
0 ;- -- 0 ' 0) zSeoC

0) CZ0E-o0 ~U

'D0 acvO)o4 w a) ~ a- co rC-

in -4--oa % > c- WV)

r L. a)n -5 = 5 =o Ucn

___ -f s CU 0(D L:

-)0 . 0 a) U)
o 0 Ll:3c

= n C I 0 E 0 > 0 0 75 0

r 0

00

fn

00

*a~cu

Ask Is M-)4

C) CL)
""0c m -

E
(13 E

0 0l

M

U - - ~ - 0 -

E)C t 4-L. 4

"CU.0 0 0•_,-- --cz a .: cm 0r•"

a)a* O n E .D' n ca a
C -o .~i)0 WCC 0) U

E .:o o o a) c : -•"
(D 0 oc 4 Z- 0) 0) a) CD U)

~0). M,~U 0 CL

:m 4-E

- '5, 1 CO:"0 EC C OC
a) n'U 3A 3:C~'U

L:=•- 0 0o: 0

;-- - C L-j - U) Wa)C5 .- ' U)).CO r~ CI C U)

o-o oE 7 L a) 0

"-" 0 -2 (- 0 E-
49--- u " - LQ-•c - oU

a0 " 0 - 0

a)E U) 0 "n o

=- >,Q CIO U) cz L

0 a -C 0 a UC C 0 U)

0 CDco
0 U) 5.9 WE a) a)

U- M I-- - - . 0

CU CL _J r_ 0M
) a) S_ 0 -0 0- CU
-O •a)) 0). a

E ED OCD,>U
_ C: 0) a)00

, _ .ao ,-) >D w• C CU CUWU 0 (l) 0~ (1 a ~)c - L- - l

co.- E.- m >. . - O -) CL I0.-w ~ 0)U cm ~ LC L) *e 0.
0, CU (D (1~W) C .t)

(1) 0)C < U) C:

l! t~ % tf a) •••

a EE.9 o 0 L:0 D_0 '
(I) Ucn C)C~ w~E~i -d-

0rn 3k.)Z

>IUU~ En U) W) .Cz4
0- E~ CD U)c 7

CL~=~ CoCU o: a)E .

CL-~~ a .C E E A.c a) 4- %4-4
__~~~~ a U >, . .0 W

a) 0C 4- U FnL - .CD (aO .

ZOE~~~E4-CUE5C)Uj55~UU
U) U) (D C: U)Ž0 cd -- a) -c EoCO w

'0 OU) 0 C ;)Ca) cn a)> : C3 ~
0z 0 0 U U0l ca.5 C W c m.

CCUU N- C w a)..-oZo E c c)a~, q) :t! 0 Cl D

(D 0 0 S S
3:- CI Snc nU

12

CD
0)

0) CO.

0- 0

0)0
U)U 0) 0)a -0 (

0> -

Cla)

a) I 2

(Di0) CD _0 :

W) 0) ci m
00'- (1 ~0

ci) CZ
*0 (-Da)

co a) a Cl) U

cz~Qci (Da0a)E

> 0 0) 0) C

cc o
U L C/) (D' 0 a

0) 7E. a) cod c
>l l-. CD. I

S ~~ 0 SS

*~ (i,0 Q

- CD)~ C.) C(1) 0

0. 0)C CcE 0
.r?~O 0)a al)a~ m a V

-D 0 cu (i D a) r

aU~ C) o m 0) co
CL CO

00
E~J CO cu CIdC

U)DJ C) o -a

CU (a). a() C m 0 CD .- C.)-.
Ca0) 0)0 iCDao > 1)

CD ca CO C~D~ (n Cd

'0 00 (D~ C C

?: co 0o co C'
m) C0W) 0)0S2

-l) 0)- 030 EL4 --

CD (D).0C0 =3~ 0)Co~c E a-
0 C/ 0. 0304 C %--
w 0/. U) 0)Cn. a) oCL.C- a0-eo Cdco &do CL~

a) CD) C) 0 c) ca

U) ")y4-m -o .c 0) L-

-0E Q) E 4 1 0 c

a):~ CDd ua
o0 w co~ C- u h

c - W -

_0 cz)C r C C-) M -a a) cc

CU C Ld ca0)! >L wL Cd

a) 0)0 Z -0 d~0
_ n C)) -f-

co z C C/ U

(z i) ia CD 4 "4 4- 13

,i C 0(nC
q -,c 1 3 Lc) .

V am

*- 0. Z

Eoc

Cc- LM

Lu -

fm~~ 0 ý

C')

o00

C'CZ

4-j L > >-c

c/) 0

0 cz S

00)) -2 e 0))
00 E

:0 V _ Lca C:
CL CIL

aq
12

E C" Zz

C 0 CD E 0

CIS ~ Cc0)) '- coC'

U-~ ~ M o- 0 DCCD C c

E~)C 0 D r-CO-
ca .(D C :

I.... CD0
0)) (n 0+-)
oE co~- o) t! 'I)

- 0 E 2 Mn co 4- . -

C : E ~0 0.)c$ c

4-) L))0
00 CCo 0)0u ~ CIS
*1 n-cn 00 8 7E-) 0C~-0 0)) 0)c

Cl 0C)- 0u CIS 2F

0 0 0 aCZ 0) - CU) (

*LM 0))L -0 cac Z)

In L 0) D' U) C)) a)-. CM

E 00)z -E i
Q (1) 0.. 0n)CZ

* C N0) - Q) - L

a) 0)t c .1 :0 0

a l) >)~ I .2 ~
o) C: C) 1 0)

co Q-)0 V)c

M~ C U)C::

Oz I- V) Žcln cn c-- EC U
a) Cl 0) 3 E .10a

H -D z0)C

0n cn 0 W: 0)- U

Ua .P SS 0 0t

ox

I-A A

E E o
*0-0

0 0n A

%3) AU
- E - =

a I

x >2 x 0

0 ci)o 0x
U ~0 L--)

LME 0)CD(

0 a,

CZ - +- 0 c
0U a) E~

U) CD 6

7z I Z~:II i

> Sn 00 S" 3

0 0,- ca

o Z0l CL.0z

E 0 0). 0

-r- 0)

a) CO L.% ca

0) 0) CO OE >)a

ca)* -5 ý-4 0 M C1

Q) m)O (D 0
co.- CD aO-- 0C wI

C.)0) 0 Cu 0
>-C LO c$ cco cz 0) 0 a

4%. 4- ý
cO coC > 0 U) Co CJc*. Vu)0) la)~ 2CCO Z-4-.S 0o - a)-UZ)U)O I >,0))C) a) +- a c) ý

o ~ -0 c.At, czc -rc
E5L 0)U)~ CU0) C:c()

a)

>) EU)CO 0 o0 a)

CO 0) E0)U C) 0

c- U)) 10) 0~' 0

U) 0 &:t!~>CO a)--O

.5 0) OM F-E. 0 Cl

co C: 1 00 a)S

I. 4

000

CO ~CO)-

AI -2 ED

C~CD
A 2>-

CDL

Cl) > A

co co

C 4Cl)

~caco 0)U(O 5
C/)V

O~~~U)la) -U)

CDC
-0 C ~ r_)

00 0 0 0 0' S 0c 0z 0 0
L- -u

Eo c a)

0 n 0) C0 Co3u,

4- L-

0 E>o W _:(E
> ~ ý5 -U '00 L .C4

0~ CL C: E = (D-
(D 0 (U co co

0 .

CD 0 as c 0 0
E k, 6E OU .

co o U)m~
Ca *l) u>% 0 Q) cc

a)
m) 3 ~C U) 4.- 44

C0) a)U C: C:C0 L MC o -C ~
a). U)CV .-C -C ~ :3 ED 4->

Z.C- '4-4 -0 CL
0_- 0- cn I- 1 +- >(
0) (D (D- U C1 0co-

_D > - D Eý. +, -a
-o _ E ca0 Q) - C: CU

(z --c- 0-
< C6) a) +-I 0ý.a

.0 0 c E 7aC- a 0 C:

X- :3 :3 x : a) 0
ýU) 00DU) to~ U) (~ -% .w 4DcC=CC

.0 LO

2) 0' E E > 0 0 Za(U 't Z) -0 1

CL A
0)(vtco: -o C: - co

(n = 00 C
E4->a)c U) (0U4-- L, . Ca)=3 Co ; -0 o :3~ C=a0 o E a)) Cn -)4E- -F CUc a(c) .- CD :3 aC1 :~j xU C 0 U a)U 0 0 D 9- +

ZL 0 UU)0) 0UC) Cl -)f, ý(~~> co un 00-)C loT~ >CD C~~ 0a C

U l) U). V: cis E co
-0-U)f 0))

4 'a)~ U cr a ',Z C CDDV ~

zl 0S2 -c a) (D) 0 CM 0(CS)

0 < 0 D - 0 S .G

00

a) a E x C:)

CI)E E

CDC
E) c 0

.4D. a) 0)

CD)

00t.
_ _E_ 0

E (DS

E -0Cuý 4- E 0-

'=0 _0 I
.(D L Cf < E E~ cnU) "D. E 0- 0

A- --

0 EE E

C.0) 0 0_ 0)~) 0
C.c) U oVQ ojE C:c C -

5, 44 -0

0)
0,

C

E 0 c0
Oa) :31-C
-0 0 4~.,

~ E.E
4--

CE() I

CC 3a)
0(~ ma

U)h HL 0a) Z 0

U) CO,*
0C.

co U) C "oHa
~ 0 1-

a) cn 0

Ha)CL 0>C(

0 E- Um 0 C. 1

E cz
00c

0) CU 00 a
5l00 C) l)

C: D :33 I.,_r _

~-C6 Z 0 :4
:3 0

4-~-
0L~t--

0~ D~ 0 o -0. - c .

0 ~-0 -. nC 0a
4-- C~> ICo-

(D M CO000 o0)7

>~ : -, a) Z -

0 ~ ~ (D 10cfCL 0

_o
CD

C 0 D) o u c: L m C-
UC cC C- a) -- -

z~U 0 00 s0 c
2 CL 0 _r_

U 0 Q a) Z 7 S 5, 0 CL E

(0- 0 -

CC
a

>I 0 m" m>

C: Cl
tj II

5.a

=3 0 _
U) 11 - 01Z '

A) E9-)o1 co_
co ~ >-. ý ý-

d) zz CM
0 C

w UVC) 0 04-

0.. 0 o~

X f- 0l 0ZC(D(i +f Q o

70 Cj
in L .

>) :31ccVu * -C D L a) 0
CO U)

ca 0'
C) 0,a 072 E)

CL 0) cl 0)W 04' _Ile) >- 0L 7(2C
0 0

co 0ý S l C L * 0 5 40 0
0 0

co'0 coOo *'5 .~ F;

a) "0 -a D)c co 4

ac L , (D

:3 -0o .- w 0 'D.0

- 0 *
2

0- > ~ , - a a-,e
(1) CL) cis'o L5.

_ ~ r U) 0E2 * a) a

c -~ E.$: 4-

`, L.D a C 0 V E.~ 'm'a
o. .C " C)70

C 0r- 0 :3

*0 ~ (nZ _0 ccc a
Eo 0 C 4-i 0CAU 3 a

0E o0 a)OC.) C.) 0 -C
ýc W, ->Z~ *- - .- C =3 +) a

0 , Oa CZ 0a C.a, 0

C3 -0 _n 2:c nZ r

-0 0 C':,
Ezc ~ E~ a)o' -~ (n _-S2>~ 0 a, a, _:U)

E E 0' (D r 0 CDa,.- 2
V . 0 0)U' c

0Z a) dci (Z U Z D C.) CO

-o - --W E 0 C~ c: r-=w
0C' a.c o 0a, (z >- _z- .,r

C:~ Ea 0 a,

2 z uD :3~i "a C)'I a, a,- 2

0
-0

o ~~o0 a~-Cn -0 C CCa

CD =-O C:-r n D =
00 .0 0 D> : 0 .5 a, r)

= -SC m -0 50 0 0 03

CL. U)a)

0. 04))
4)IVo (D

-L 00

cc E

WO IM " %I.-

0-0 0. m

a))

0Cu0
0 ~ >~ 0 .

4) E

o X
.- 0 0 I

E
0T

?

CL

* 0 0~ 0

75 0)

0) .0h

~)U) -0) 01

S0) 0 0 V o

Sc 0 0)
C0 ca (1 Ci). C))

CD0 U) a. =)
CD 0)) EC U) 0

0 0 cc 0~
~ 0 C%4-

U) C) as Ca)-
0n 0 E ou ~ 00

4nc - a) EC

o 0.S E (- cn(~ C
0l a)_

&. = 0C:

U) o 5 cn (1 t
a) a)

a) CD) 0 W Z5
0 00

U) CD E 0)0 0f> a)

0-0 0 " Q (
CD c 0 cn2)) U

40. 0. Co
00C -14 0. 1.0 0' CD CD OEE0

E *C- 5 :5 "'0 C/) 7 =

cl) (o : a)) . n 5% u
C:15 00~ (D E ..0 0n
CDo~ >NZ~ 2

UC 7) 3
6- =a) 0

C' ca >% a)- '0a
cu _0 E c: 4n0

>2 +- cu' *- C C)
co cn co C CM 00 0 a

(D CO-4 o* cl t c

754 Q)~ _, .2 :3

_n CO 0D na)x Cn
0 E z 0 Wa)

>, V) _r C:L3-.
a) _ Co . SO

0 E. - 0) C
:6 (1) L) oo"a M

is~ 0 0o S

IL

Ui

(0 a.

a)

LM)

0 0

CO))

Laa: Oa:

•o•ý0 E (D •o~

0 (0
--l CO 00 0 a)

a) a)M D-D E c--L,- .. • 1• .

">'. o) E.0 W

.,•,_0 15 .-5 ,

""a) 0 to 0 0 io E5-DL, 0)-ý c C::

C)2 c a)01 .) Ec (
.0 =, Co-0--a)C DU m,

a) 0 (D E m o) E' "~~~~~~ To-iO w' 0 c0

U) o E :3o. 0.- m CX
S"""5 -5• "-n ~ E E~f

0
D'): 0•' 0-• •. o a)

C~~~~ C (rC: - 4- n<0

"�' c- E

> CU c n2,-, -a U_ " .0
,--N 0 0 O0 Q..D

0 .nM 0 U

.- •.. • " 0) cn mw~3 o' 0 "0- "

0)~

m~co 0c o0 W oL L)•-o 0' ' ,-,'
a),. E cD o A 'c • -f

E * r- .2 a r-S E 0'

a) M,5 :3 0). m

0o _ a) 0 0 0 _-= -

o o-E . o. oc-°C8°

S% 0),- E a) W- -

CL CL A
o) cL a) u 0

"a) -0 C D Q0 C z u n
0 c 2o c -r -• I --, w @v . '5-, _o:

o) Z50)r

> c_ - 3- -

-00 C I0)Cuo 00000D0 Wm
a) 0 - C . 0 a

0.O 0 o o W M

C- EL E_ =1 Rn W :3 r- a) r' -0 0 a). r- a) w

o0 0 c- 0r. 0 =0 •0 0 • o ,

a)- 0 02 02 ' a) 0.!0 = r

0 0 M W

0)

0) Q). 00, W0 3,)

D* 0 ti S 1 0 -Z CL *o m*3C
r- .- c - o.'-- - - -0 3:_ __ _ _

Cu
L

.~ 0
LM7

D_ E

00LM

0w

EE
00

00cl It 10EE

Mcgaprogramming in Ada Course: Reuse, Workbook

"UNIT 4: REUSE 4
UNIT SUMMARY

As you develop software, you will often find that you need a module that offers functions and data
types similar to, but not exactly matching, one you have developed in the past. The more experience
you gain with software, the more you will find this to be true. You will also find that other people have •
developed software you might be able to use. In other words, no program is totally unique. It solves
a problem related to problems that have already been solved, and its modules and structure resemble,
in part, modules and structures of existing programs.

You should try to reuse existing software whenever you can. Studies have shown that in many
programs, especially larger ones, 50% of the lines of code can easily come from existing programs.
Reuse of 70% of the code is not uncommon. Since a software developer produces an average of 40
lines of code per day over the course of a project, it's easy to calculate just how quickly the savings will
add up.

Unfortunately, reuse is harder than it might seem. You'll find the primary reason is that you developed
your modules for use in a specific program. When you try to use them in another program, you often
realize you need something slightly differert: a function must operate on a string rather than an
integer, for instance. You may find that writing a new module from scratch is easier than modifying
an existing module.

There are several things you can do to improve the chances that a module will be reusable. One is to
use generic packages. When you write a generic package, you declare generic parameters that specify
the different ways you expect you might want to use the package. You can then instantiate the generic
package by providing values for the parameters that meet the needs of specific programs. For example,
you can use Ada generic packages to rewrite the Line lloldei package so it can hold integers, strings,
or any object that is a valid Ada data type:

generic
type tltin is private;

package Itolder is

type List is private;

procedure Initialize(Items: out List);

private
Max_VAlues: constant Integer := 10000;

type Items is array(Interger range l..MaxValues) of Item;
type List is record U

Number: Integer range O..Max_Values;
Values: Itemso;

and record;
end Holder;

If you then declare a data type representing a line:

subtype Line is String(l..255);

;_] • •• •• • •

,V ,. .. ,-S _ , 0 , 0

MegaprogramminR in Ada Course: Rcuse, Workbook

you can create a LineHolder package that behaves identically to the one in Unit 3 using the following
generic instantiation:

package Line-Holder is new Holder(Item => Line);

Because Holder is a generic package, you can use it to hold objects of any type. For example, you can
use the following generic instantiation to hold a list of integers:

package Integer-Holder is new Holder(Item => Integer);

The Ada compiler cranks out a new package based on the parameters to the generic instantiation. It's
as if you took the Holder package and substituted Line or Integer eveiywhere Item appears. See
Figures 1 and 2, drawn from the Ada code on Slide 4-6. In each figure, the generic Holder package
on the left side, with its generic parameter Item, is instantiated to yield the package on the right.

String(1..255)

type List;
procedure Initialize;

List: 1 Line

2 Line

Item 3 Line
hem ,4 Line

type ist;5 Line
procedure Initialize; , 14•
tyeList: -[

Generii 9,999 Line

Figure 1. Generic Instanuation ol the Holder Package With Iten= >Line

Data types and numeric values arc examples of parameters you often use to make a module more
reusable.

Ada has many kinds of generic parameters. Figures 1 and 2 illustrate a generic type parameter. You
can also write generic packages with generic formal object parameters. A generic formal object is a
parameter that's a constant value, such as an integer or a character. For example, you could add a
parameter Max Values that controls the maximInii number of values a holder can store. See
Figures 3,4, and 5, drawn from the Ada code on Slid, 4-8. A second generic parameter, MaxVal ues,
has been added to the Holder package. This parameter lets you specify the maximum number of
values an instantiation of the Holder package can store. You can now control both the type and size.
Figure 3 creates a package that stores 1,000 lines. Figure 4 creates a package that stores 30 integers.
Figure 5 creates a package that stores 50,000 integers.

A generic type parameter can be any valid Ada data type, even one declared from a generic
instantiation. Figure 7, drawn from the Ada code on Slide 4-9, illustrates this point. Here, the item
used in the lower generic instantiation is of type List from the package Students, which was
instantiated from Holder.

2

S• • 0 S 0 S * S

Megaprogramming in Ada Course: Reuse, Workbook 3

type list; S
procedure Initialize

2 Inege

FeIiigzre 2 iInt oth l P W"Integer

type List;L

MaxVaue rocdur Initialize;

List: Generic 9,9991 I tge

I I0,0W0

Figure 2. Generic Instantiation of the Holder Package With Item= >Integer

type List;

Anter i h r Values procedure I itialize;

MaxValucs 3 Line•c
Itern 4 Line"
type List; 51 Lin
procedure Initialize; k•"

Figure 3. a encrc Instantiation of the Hilder Package tom 10 told ,0 Lins

Another useful kind of generic parameter is the generic range parameter. It is a special case of the
gencrtic type parameter, where the type you provide is a subtype of integers. Using subtypes helps you

" ~overcome the situation in Figure 7, where to index calendar years you must create a new data type to
S~hold the years of a school's existence. Figure 6 uses the YearIndex subtype in the lower generic

instantiation to create a holder module whose indexes range from 1980 to 2029.

You can also improve the chances that a module will be reusable by spending some extra time thinking
about reuse as you develop the module. Ponder the functions that the module offers. Think about what
is essential to the module and what is incidental to the program for which you are developing it. This
will help you realize what generic parameters are appropriate.

3S

MS

S SSS0

Megaprogramming in Ada Course: Reuse. Workbook

If you follow this advice, over time you will build up a "library" of revsable modules. You will find that

your software development process automatically incorporates reuse. As you design your software,
you will consider what modules are in your library and base your design on what you can reuse,
realizing that reuse will save you considerable amounts of time.

30

Item Mag V

Item .• " rocedure Initialize•.,

Figure 4. Generic Instantiarions of the H~older Package to Hold 30 Integers

type L;type List,

e procedurr Initialize; I

Lit 21•Litl Integer

I Max-Value inegr0

Figure 4. Generic Instantiation of the Holder Package to Hold 50,3100 Integers

Reuse goes hand in hand with the information hiding design method covered in Unit 3. To create
reusable software, you must make it adaptable to a range of situations in which it will likely be used.

L ~ You can do this by hiding how the essential functions work, but showing, on the interface, the exact
ways in which the adaptation is possible. This separation of interface and hidden information comesdirectly from information hiding.

21 Intege

Max alue 3 Itege

Item 4Intege

tyeLs;54nee

lSoedr Initialize; 0

Megaprogramnming in Ada Course: Reuse, Workbook

Name
Math -Grade StudcncL-ndex _____________

CS _Grade type List;
History GrDe _________

Itm Index List:

I_ Stdet

Item

0 S SS50 Student1

Megaprogramming in Ada Couise: Reuse, Workbook

Name b~
Math Grade wf
CS -Grade tyeLit
HistoryGrade procedure Initialize;

Itm Max-Values List:

Math-Grade

MaxsValuest"AS-Math Grade

Item -*44 Students.Listd

Ya50type List;50Suet
procedurencnt Iroidurianlizie;

List: Math Grad

ItmMax Values 1 Student Hoder

S(1 Stdent older

Acco plidment IrocdtriIntiaiz;

Fiue .InIatinm Stdn Gradens andSchdlHisor

Item

typ Lit0 Stdn Holder

Megaprogramming in Ada Course: Reuse. Laboratory 4
UNIT 4: REUSE

LABORATORY SPECIFICATION

NoTE: This laboratory is not being produced for the pilot offerings. The laboratory will appear in a
later version of the course, based on comments received from the teachers of the pilot
offerings. 'this specification provides a definition of the current vision for such a laboratory.
Because the laboratory has not been built, not all issues have been resolved. Unresolved issues
are shown in italic text.

PART 1: BACKGROUND

In this laboratory, you will assemble vending machine software. You will not write this software
yourself; you will use the reuse techniques you learned in your lecture to create it. You will work in
groups, jointly reusing and developing the software.

Suppose you are an employee of the Press 'n Gobble Vending Machines Company. One day, your sales
department informs you that it has located two potential markets ýOr the vending r chines your
company builds. However, none of Press 'n Gobble's current machines quite fits ther market.
Management has decided to develop new ones and assigns you to develop the software the machines
will need.

Here is a description of each machine:

1. The first machine is to be sold in the United States. It will dispense a variety of food products.
0 It will look as shown in Figure 8. Items in the second row cost 65v. All other items cost 55¢. 0

Money
Received

11 12 13 14 15

21 22 23

L Enter
Selection

31 32 33 34 35 I--f -------

M ~r 1133 34Dllar
4~

41 42 43 44 45

Figure 8. A Foc)d-Dispensing Vending Macnine

7

0i• 6 S • 0 0 0 0 0 --

Megaprogramming in Ada Course: Reusc, Laboratory

2. The second machine is to be sold in Germany. It is shown in Figure 9. This machine is to
dispense hot beverages: coffee, decaffeinated coffee, tea, and espresso. Because it dispenses
only a few items, it does not have a numeric keypad for slection. Instead, each item has a
button; you push that button to get the item. Of course, German labels will be substituted for
the English ones when the machine is placed in final production. You can insert 10 pfennig,
50 pfennig, 1 DM, 2 DM, or 5 DM coins. The machine dispenses change using 1 DM, 50
pfennig, and 10 pfennig coins.

Hot Drinks
Coffee Decaffoinated Espresso Tea

Coffee
50 pf 50 pf 1.2 DM 80 pf

Push PPs -s

S" ' -0

Figure 9. A Drink-Dispensing Vending Machine

Your assignment for this laboratory is to generate the software for both vending machines. You will
do so by choosing the necessary software modules, as explained in the exercises below. You must
compile and link these modules. You can then run the software.

THE SOF•WARE DESIGN

Press 'n Gobble's software developers maintain an extensive, well-organized reuse library of the
modules they have developed over the years. Furthermore, they hale developed a general design for
vending machine software. When presented with the requirements for a new vending machine, they
can quickly determine the modules they need. Every program they develop always has the modules
listed in Table 1.

M!
I8

S S S S 0 S S S 0

Megaprogramrning in Ada Course: Reuse. Laboratory I

- Table 1. Software Modules Used In All Prcss 'n Gobble Vending Machines

Module Name Module Descriptimn 0

Change Return Button Signal that the money the person has entered so far is all to be returned. The
hidden information of this module is how it is detcrmined that the button
has been pressed.

Coin Return Dispense a selected amount of money, in coins. The hidden information of
this module is how the hardware that dispenses coins is activated.

Coin Acceptor Accept coins and ,rovide to the software the value of the coin. The hidden
information is tht aeans by which it is determined what coin was entered.

Item Dispenser Dispense a product to the person. The hidden information of this module
is how the hardware dispenses products.

"Money Accumulator Maintain a record of how much money the person has entered so far. The

hidden information is the means to calculate and represent this
information.

Item Selector Signal a selection. The hidden information of this module is how it is
determined that the person has pressed the buttons to make a selection.

Input Event Handler Collect and respond to the signals issued by other modules. The hidden

information of this module is the algorithm for collecting and responding
to signals.

Change Calculator Determine the amount of change needed for a purchase. The hidden
information of this module is the algorithm for calculating change.

0 Price Information Maintain the price for items dispensed by the machini, and allow i
determination of whether a specified amount of money is sufficient to
purchase a specified item. The hidden information is the representation of
the prices and the algorithm for determining whether the purchase price is
enough.

Holder Maintain a list of items. The hidden information is the representation of
the list and the algorithms for accessing it.

The details of some of these modules may vary between machines, but a form of each module exists
in the software of any vending machine Press 'n Gobble sells. This list of wodides is not intended to be
complete, just illustrative. ThLy were derived using inJormation hiding. Moreover, many of them are used

in both vending machines. This module sharing is the priarny requirement for any design.

Press 'n Gobble's software library has other parts too. These parts are only needed in certain vending
machines, as described in Table 2.

Table 2. Software Modules in Specific Press 'n Gobble Vending Machines

Module Name Module Description Include If...

Bill Acceptor Accept bills, and provide to the software the The vending machine is to accept
value of the bills. The hidden information is the both coins and bills.
means to determine what bill was entered.

Money Display Display an amount of money. The hidden The vending machine is to display
information is the algorithms used to activate the amount of money the person has
the display. entered so far.

9

Mcgaprogramming in Ada Course: Rcusc, Laboratory _

PART 2: LABORATORY EXERCISES

EXERCISE 1: UNITED STATES VENDING MACHINE

You are to create the software needed for the vending machine to be sold in the United States. You
must perform the following steps:

1. Read 'he description of the food-dispensing vending machine on Page 7.

2. Determine the modules you will need for the vending machine's software.

3. Assign a set of modules to each member of your group. You should bear in mind that some
modules are larger than others and partition them equally across your group so everyone has
approximately the same workload. Use the figures in the last column of Tables 1 and 2 as a
rough guide to the relative time each person will need for each module. This column isn't in
place yet and can't be until the software is written. We shall need to time each module's compilatior
and prepare the figures based on that information. Note that Steps 1 through 3 would make an
excellent prelaboratory homework assignment.

4. Each person must perform the following steps. See the accompanying write-up on using the
laboratory for instructions on how to do so.

a. Create a directory in which to work with her or his assigned set of modules.

b. Copy the modules assigned tu her or him from Press 'n Gobble's library of reusable * *
modules to the directory created in Step a.

c. Write generic instantiations for the following modules: . . . We shall ask the students to
write a few generic instantiations, just so they get the feel of adapting reusable modules to
fit a specific need. We shall provide them with templates, and we shall provide the teacher
with the answers.

d. Create an Ada library. This is assurning that tile Ada compiler does not support
concurrent compilation using a single library.

e. Link her or his library with the library of everyone else in their group.

f. Use an Ada compiler to compile her or his modules.

There is one complication to Step 4.f The modules are represented as Ada packages.
As Unit 1 mentioned, Ada packages must be compiled in a particular order. You and
your fellow group members must observe the rules in Table 3 as you compile your
modules.

Table 3. Compilation Dependencies Among Press 'n Gobble Software Modules

Module Name Compilation Dependencies

This column lists a module that's This column lists all dependencies.
dependent oni at least one other module.

i0

i. • • •• • •• •

Megaprogramming in Ada Course: Reuse, Laboratory S

O 5. Your group is now ready to create an executable program. The person who compiled module
main program must invoke the Ada linker.

You may now execute your program, using the following input data: ,.)
After you have finished executing your program, answer the following questions:

1. What communication difficulties did you encounter and how did you overcome them?

2. How would you compare this to your experience with software development?

EXERCISE 2: GERMAN VENDING MACHINE

Repeat Steps 1 through 5, this time creating software for the vending machine Press 'n Gobble will
sell in Germany.

When you have built the software, execute your program, using the following input data:...

Now answer the following questions:

1. IHow many modules from the first assignment did you reuse without any additional work?

2. How many modules from the first assignmcnt did you reuse by performing different generic
instantiations?

• • 0

II

Lb * S S S S S

Megaprogramming in Ada Coursc: Reuse, Laboratory (Instructions)

PART 3: INSTRUCTIONS FOR LABORATORY

NotE: This laboratory will ultimately be available for a variety of platforms (IBM PC, Macintosh,
etc.). This write-up, which describes how to use the laboratory, is specific not only to each
platform but to the institution in which it is used. A separate version of this write-up is
therefore needed for each platform, and instructors must tailor it to their own institutions. In
all cases, students must:

- Have an Ada compiler

- Be able to create files

- Be able to read files created by other students

- Be able to read a set of files created by the instructor

For simplicity's sake, this write-up is written as if the laboratory were being run in the following
environment:

- Each student has access to an IBM PC (or compatible) computer with a 286 or
compatible processor.

- Each PC is connected to a file server on drive S.

- Each student has permission to create files in a subdirectory of drive S.

- Each student can create and edit text files (Microsoft's edit application or most Pascal
compilers would do).

- Each student has access to an Ada compiler.

As in the laboratory descriptions, unresolved issues appear in italic text.

This write-up describes how to use your computer to perform the vending machine laboratory
exercises. The emphasis is on Steps 4 and 5, since these are the steps that involve using the computer.

1. To perform this step, you must log on to your computer. Then perform each of the following
steps:

a. Create a directory in which to work with your assigned set of modules. For this
laboratory, you will work in the directory s: \adalab. Create a directory whose name i
is your last name:

C: \>S:
S:\>mkdir \adalab\yourname
S:\>chdir \adalab\yourname

b. Copy the modules assigned to you modules from Press 'n' Gobble's library of reusable
modules to the directory you created in Step L.a. You will find these modules in the 5
directory S: \adalab\pressgobblemodules. The modules are in the following
files:

12

0. in0J i0 n 0....

Megaprogramming in Ada Course; Reuse, Laboratory (Instructions)

Here we include a table listing all the modules shown in
the tables in the laboratory. For each module, we state

the file or files holding its code.

S: \adalab\yournanme>copy \adalab\filel. ada .

Perform a copy command for each module assigned to you.

c. If you have been assigned module X, you must write a generic instantiation of package S
Ynamed Z. A generic instantiation of Yhas the form:

package Z is new Y(P1 => VI, P2 => V2);

Use text editing application to create a file named z. ada that contains the above line.
Use valuel for v1 and value2 for V2.

d. Create an Ada library, using the following command:

S \adalab\yourname>mkilib

e. Link your library to that of other members of your group. For example, if your partners
are hername and hisname, issue the following two commands:

S:\adalab\yourname>linklib s: \adalib\hername\ada. ib
S:\adalab\yournama>linklib s: \adalib\hisriaisti\ada.lib

f. Compile your assigned set of modules. For instance, if you are assigned modules
stored in files x. ada, y. ada, and z. ada, issttc the following commands:

S: \ada1ab\yourname>ada x. ada
S: \adalab\yourname>ada y. ada
S: \ada1ab\yournamk>ada z. ada d

Be sure to observe the dependency rules! If you do not, you will get an error message
from the compiler:

The urror n1uusage when a package can't be found.
S

2. Whoever in your group was assigned to compile the file main. ada must now link together all
the modules:

S: \adalib\yournam&>I nk main

This will produce a file called main. oxc. You can execute this file by typing the command: S

S: \&dalib\yourname>main

13

Megaprogramming in Ada Course: Reuse, Laboratoiy (Instructions)
I

This page intentionalily left blank p 0

D

14

f•i S 0 0 S S S 0 0 0

Megaprogramming in Ada Course: Reuse, Laboratory (Teacher Notes) I

4
UNIT 4: REUSE

LABORATORY SPECIFICATION

TEACHER NOTES FOR LABORATORY

This section must describe to the instructor how to conduct the laboratory. Topics include: 0

* Suggestions on how to make the example seem more realistic by inventing a background tailored
to the school in which the course is being taught

* Answers to the laboratory exercises
I

* Additional questions the teacher may want to ask students

S0

15

00o

Megaprogramminig in Ada Course: Reuse. Laboratory (Teacher Notes)

I..

II

This' page inltentionally left blank. S -0

II

iU

SI • • •• • •• •

l .- - - i -- I J i I I I I • _ ' iii i i l •6

0

Megaprogramming in Ada Course: Test

ii, TEST FOR 4
MEGAPROGRAMMING IN ADA COURSE

1. True/False Software developers spend the majority of their time writing code.

2. True/False The majority of software changes result from the need to enhance the
software. 0

3. True/False A programming language can help developers manage change and
communication.

4. True/False The only information in a package that is visible to other packages is that
contained in the package specification, outside the private part.

5. Abstraction helps developers separate the from
the

6. True/False A developer who builds an Ada package must write both the specification and 0
the body before it is useful to other developers.

7. True/False The stepwise refinement design method results in designs that are easy to
change.

0 8. True/False The first decisions you make when following the information hiding design 0
method concern the modules in your program.

9. True/False Software developers usually find similarities between the programs they are
developing and programs they have developed previously.

10. Ada _ help software developers build packages that other software
developers can reuse.

11. Describc the purpose of soltware design.

1I

• • • •• • •

S.... • •---•r•-- -- •'''••'•-'- • Y'•I• u r f'tFIM"IF " -l ll I'limll I~l lll~lll[S

Megaprogramming in Ada Coursc: Test

12. Using the principles of abstraction and information hiding, design the interface for a module
that implements a counter-that is, something another module might use to maintain a count
of the number of times some event or situation occurs. p

13. Consider the following specification of a package for searching an array of integers:

package IntegerArraySearch in

subtype ArrayIndex is Integer range 1..1000;
type IntegerArray in array (Array-index) of Integer;

procmdure SearchArray(

Array-ToSearch: in IntegerArray;
NumberOfElements: in Array-Index; • O

Element_ToSearch-For: in Integer;

Elew-nt_Found: out boolean;
Index-IfFound: out Array Index

end IntegerArraySearch;

Use generics to rewrite this package to be more reusable.

2

" " " " " " " 0 0 ° 0

_®

Megaprogramming in Ada Course: Test 4
TEST FOR

MEGAPROGRAMMING IN ADA COURSE

TEACHER ANSWERS

1. True /n Software developers spend the majority of their time writing code.

2. rue/alse The majority of software changes result from the need to enhance the
software.

3. r alse A programming language can help developers manage change and
communication.

4. r alse The only information in a package that is visible to other packages is that
contained in the package specification, outside the private portion.

5. Abstraction helps developers separate the essential information from
the ir'elevant details

6. 'hue/•-lse A developer who builds an Ada package must write both the specification and
the body before it is useful to other developers.

0 7. True/M a 'he stepwise refinement design method results in designs that arc easy to U 0
change.

8. rFue!alse The first decisions you make when following the information hiding design
method concern the modules in your program.

9. u'alse Software developers usually find similarities between the programs they are
developing and programs they have developed previously.

10. Ada generics help software developers build packages that other software
developers can reuse.

11. Describe the purpose of software design.

Software design lets software developers decompose aproblem into a set of modules. Each of these
modules is simpler than the whole. This is necessary to reduce the complexity of the overall system,
making it easy for individuals to understand portions of a system.

Another reason for software design is to break a problem into parts that can be assigned to a set of
individuals. In other words, software design is necessary for large programs to ensure that each
person on a team has a coherent development assignment,

3

* * .1

Megaprogramining ini Ada Course: Test

12. Using the principles of abstraction and information hiding, design the interface for a module
that implements a counter--that is, something another module might use to maintain a count

of the number of times some event or situation occurs.

The following package specification provides other packages the ability to initialize the count
to 0, to increment the count, and to determine its current value. This is the essence of counting.

package Counter is
procedure SetToZero;
procedure Increment;
function Current_Value return Integer;

end Counter;

13. Consider the following specification of a package for i ,rchioig an array of integers:

package IntegerArraySearch is
subtype Array-index is Integer range i..1000;

type Integer-Array is arr;.y (Array_Index) of Integer;

procedure SearchArray(
Array-To-Search: in IntegerArray;

NumberOfElements: in Array_Index; S
Elementro_SearchFor: in Integer;

ElementFound: out boolean;

IndexIfFound: out Array-Index

end IntegerArraySearch; S

Use generics to rewrite this package to I - more reusable.
You can make the arrays base data type and index genetic. Note the name change for the
second parameter The old name was based on an ordinal counting system. In the generic
version, the array's lower bound might not be 1.

S
generic

type Item is private;
type ArrayIndex is range <>;

package ArraySearch is
type Generic-Array is array (ArrayIndex) of Item;

procedure Search_Array(
ArrayTo_Search: in GenericArray;

Last-Element: in Array_Index;

ElementToSearch_For: in Item;

ElementFound: out boolean;
IndexIf-Found: out Array-Index

);
a' end ArraySearch;

4

(2

,' IMegaprogramming in Ada Course: Survey

SURVEY FOR
MEGAPROGRAMMING INAADA COURSE

Please answer the following questions. The organization that developed the course material will use
this information to improve the course.

1. Do you feel that you understand basic software engineering principles (abstraction,
information hiding, and reuse) after taking this course?

2. Do you see value in these principles? Why or why not?

3. Do you see value in using a programming language such as Ada that helps you express these
principles? 'Why or why not?

4. Would you like to learn more?

S.... I

Jr, •S

__________ ___________________________

/2S6S

Megaprogramming in Ada Course: Survey

5. What activity(ies) or example(s) was most helpful to you in understanding the basic software
engineering principles?

6. Do you have any other suggestions for how the course can be improved?

2 0

It

Mcgaprogramming in Ada Course: Survey I

SURVEY FOR
MEGAPROGRAMMING IN ADA COURSE @

TEACHER ANSWERS •x•)

There are no right or wrong answers on this section. A suggestion for this survey would be to hand it S
to the students after they have completed the test and give them extra credit if they fill it out and hand
it in the next day.

3S

D

ID *1 - - -I

11M

Megaprogramming in Ada Course: Survey

0
I

77zis page intentionally left blank. S 0

S

iS

4

Megaprogranuing in Ada Course:
Laboratory for Unit 3

S

SPC-95013-CMC

Version 01.01.04

November 1995

Prepared for the
Department of Defense Ada Joint Program Office

Produced by the
SOFTWARE PRODUCTIVITY CONSORTIUM

SPC Building
2214 Rock Hill Road

Herndon, Virginia 22070

Copyright © 1995, Software Productivity Consortium, Henmdon, Virginia. This document can be copied and distributed without fee
in the U.S., or internationally. This is made possible under the terms of the DoD Ada Joint Program Office's royalty-free, worldwide,
non-exclusive, irrevocable license for unlimited use of this material. This material is based in part upon work sponsored by the DoD
Ada Joint Program Office under Advanced Research Projects Agency Grant #MDA972-92-J-1018. The content does no' necessarily
reflect the position or the policy of the U.S. Government, and no official endorsement should be inferred. The n.mie Software
Produý livity Consortium shall not be used in advertising or publicity pertaining to this material or otherwise without t] ie prior written
permission of Software Productivity Consortium, Inc. SOFTWARE PRODUCTIVITY CONSORTIUM, INC. MAK'ES NO REP-
RESENTATIONS OR WARRANTIES ABOUTTHE SUITABILITY OFTH1S MATERIALFOR ANY PURPOSE ORABOUT
ANY OTHER MAT[ER, AND TIES MATERIAL IS PROVIDED WITHOUT EXPRESS OR IMPLIED WARRANTY OF
ANY KIND.

• • • •It •• •

S

0
S

PREFACE

This laboratory and teacher notes are part of the Megaprogramming in Ada Course (SPC-94094-CMC,
version 01.01.04) produced by the Software Productivity Consortium. The course, which is a short
course aimed at high school students, consists of four units: software engineering, abstraction, in-
formation hiding, and software reuse. The laboratory described in this write-up should be performed
at the end of the information hiding unit (Unit 3), preferably after the students have completed Home- 5
work Assignment 2 of Unit 3. Assignment 2 deals with concepts of the software that students will use
in the laboratory and, therefore, serves as a good introduction to the laboratory material.

0

* .

I

D

iii

• ' I•

Preface

0•-

I

This page intentionally left blank I 0

Li"

I

I • Q Q• Q •
i .. ., r n', I 'an Ti"li• I i r I l lmli ~ ii llv'

Megaprogramming in Ada Course: Unit 3, Information Hiding, Laboratory

UNIT 3: INFORMATION HIDING

LABORATORY

"In this laboratory, you will compile and execute an implementation of the rational number package
from Homework Assignment 2 in Unit 3.

The software you will use is in three files:

• RATNUM. ADA, which contains the package specification for rational numbers.

, RATNUMB. ADA, which contains the package body for rational numbers.

* * READSUM.ADA, which contains the procedure ReadSumAnd Print RationalNumbers.
This procedure uses the rational number package to read, sum, and print two rational
numbers.

You must first compile the software. Perform the following steps:

1. Create a directory called RATNUM on your C drive:

C:> nid ratnum

2. Change your directory to RATNUM:

C:> cd ratnum

3. Copy the software to your current directory. Your teacher will provide you with the location
of the software. For example, if it is located in S:\ADA\RATNUM, you would execute the
following command:

C:\RATNUM> copy s:\ada\ratnum*.ada

4. Compile the software. You must first compile the rational number package specification, then
the rational numnbcr package body, then the ReadSum_AndPrintRationrl_Numbers
procedure:

C:\RATNUM> janus ratnum.ada
C:\RATNUM> janus ratnumtb.ada
C:\RATNUM> janus readsum.ada

You must type thl:. ADA file name suffix.

The Ada compiler will print diagnostic information as it compiles each file. This information,
not shown here, should indicate that compilation is progressing without errors. If you see any
error messages, contact your teacher.

5. Link the software:

C:\RATNUM> jlink readsum

6 S 4 9 S 0 i 0 0

Megaprogramming in Ada Coursc: Unit 3, Information Hiding, Laboratory

Do not type a file name suffix.

After you successfully complete these steps, there will be an executable file called READ SUM.COM
in your directory.

You may now execute the software:

C:\RATNUM> readsum

You will be prompted to enter two rational numbers. You will be asked for the first number's
numerator, then its denominator, then the second number's numerator, and finally the second
number's denominator. Enter each number as an integer. For instance, the following shows how to
instruct the program to compute 1/7 + 3/5:

C:\RATNUM> readsum 0
Enter the numerator for the first number: 1
Enter the denominator for the first number: 7
Enter the numerator for the second number- 3

Enter the denominator for the second rn'mb : 5
The sum is 26/35

EXERCISES

1. Use the software to compute 3/18 - 10/7.

2. Try using the software to compute 1/1000 + 1000/1. 6 *
a. Why do you think the software fails? (I lint: Examine the Add function to discover how

two rational numbers are added.)

b. The lectures on abstraiction and information hiding covered the need to express a
module's functionalU ' package specification. Based on this laboratory, what else
do you think must be it i package specification?

A

2

- 00 5 0

Megaprogramming in Ada Course: Unit 3, Information Hiding, Teacher Notes for Laboratory

UNIT 3: INFORMATION HIDING

TEACHER NOTES FOR LABORATORY

NoTE: This course contains a simplified version of a planned software laboratory. A more elaborate
version may be available at a later date.

You should have received, along with these instructions, a floppy diskette containing the software
solving Homework Assignment 2 in Unit 3. This software is almost identical to that shown in the
Unit 3 Teacher Notes, with the following exceptions:

a The software on the floppy diskette includes some error-handling code that lets the compiled
program terminate gracefully under abnormal conditions.

a The software on the floppy diskette uses a friendlier input paradigm.

The floppy diskette includes the three files of Ada source code discussed in the laboratory write-up:
RATNUM.ADA, RATNUM_1B.ADA, and READSUM.ADA. You must provide each student with a copy of
these files. If your computers are linked together on a network and have access to a central file server,
you can place them on that server. Each student can then copy the files directly from that server to
her or his own computer, as shown in the laboratory write-up. You can also provide each student with
a floppy diskette containing the source files and ask them to copy the files from that diskette to their
hard drive. 0

Each student must be able to use an Ada compiler. The instructions in the laboratory write-up use the
Janus/Ada compiler from R&R Software, Inc. See the file README.TXT on the floppy diskette
for more information on using this compiler.

EXERCISES

1. Use the software to compute 3/18 - 10/7.

This simple exercise ensures that students know how to use the program they have just compiled.
Be sure they enter the input values correctly only integers are accepted. Entering anything else will I
cause the program to stop prematurely.

2. Try using the software to compute 1/1000 + 1000/1.

a. Why do you think the software fails? (Hint: Examine the Add function to discover how
two rational numbers are added.)

The Addfiwction uses the following formula to add two rational numbers R1 and R2:

R.Numerator := R1.Numnerator * R2.Denominator
+ R2.Numerator * RI.Denorninator;

R.Denominator := R1,denominator * R2.denominator;

Evaluating the first assignment statement using 1/1000 and 1000/1 yields:

3

00

Megaprogramming in Ada Course: Unit 3, Information Hiding, Teacher Notes for Laboratory

1 x 1 + 1000 x 1000
= 1 + 1000000

An examination of the representation of a rational number in the package specification
reveals that Numerator and Denominator are values of type Integer An Integer value can
range from -32,768 to 32,767 Since 1,000,000 is greater than 32,767, evaluating the
expression causes an overflow. The Ada language requires that a compiler generate code
to detect these conditions. This is an instance of language standardization, discussed in
Unit 1.

b. The lectures on abstraction and information hiding covered the need to express a
module's functionality in a package specification. Based on this laboratory, what else
do you think must be in a package specification?

The package specifications shown include information on the procedures and functions,

and how to use them. The specifications should also show the ways in which the procedures
and functions can fail!

4I

D S

•./h SillD il Niltl I H lii llail=[ltllil li~mlli l$•"" HI.-•

